

www.elsevier.nl/locate/jorganchem

Eleven-vertex polyhedral metalladicarbaborane chemistry. Reactions of neutral *nido*-5,6-C₂B₈H₁₂ and the [*nido*-6,9-C₂B₈H₁₀]²⁻ anion to give formally *closo* isomeric 1-(arene) and 1-(cyclopentadiene)-1,2,4- and 1,2,3-metalladicarbaundecaboranes, and some substituent chemistry. Chiral separations, and crystal and molecular structures of [5-Br-1-(η^6 -C₆Me₆)-1,2,4-RuC₂B₈H₉] and [2-Me-1-(η^5 -C₅Me₅)-1,2,3-RhC₂B₈H₉]

Mark Bown^{a,b}, Bohumír Grüner^a, Bohumil Štíbr^{a,b,1}, Xavier L.R. Fontaine^b, Mark Thornton-Pett^b, John D. Kennedy^{b,*}

^a The Institute of Inorganic Chemistry of the Academy of Sciences of the Czech Republic, 250 68 Řež-by-Prague, Czech Republic ^b The School of Chemistry, University of Leeds, Leeds LS2 9JT, UK

Received 23 May 2000

It is a pleasure and a privilege for the authors to be able to contribute this paper to the Sheldon Shore 70th Birthday Special Edition of the Journal of Organometallic Chemistry, in recognition of Professor Shore's astute contributions to the area of polyhedral boron-containing cluster chemistry that have been, and will continue to be, an omnipresent inspiration and example for successive generations of boron cluster chemists.

Abstract

Reactions between *nido*-5,6-C₂B₈H₁₂ (1) and the organometallic halides [{MLCl₂}] (2) [where {ML} = {Ru(η^6 -C₆Me₆)} (2a), {Ru(η^6 -*p*-MeC₆H⁴₄Pr)} (2b), {Rh(η^5 -C₅Me₅)} (2c), and {Os(η^6 -*p*-MeC₆H⁴₄Pr)} (2d)] in the presence of *N*,*N*,*N'*,*N'*-tetramethyl-naphthalene-1,8-diamine (tmnda) in dichloromethane or chloroform have generated a series of the corresponding metalladicarbaboranes [1-L-1,2,4-MC₂B₈H₁₀] (3, *closo* 11-vertex numbering system) [where {ML} = {Ru(η^6 -C₆Me₆)} (3a), {Ru(η^6 -*p*-MeC₆H⁴₄Pr)} (3b), {Rh(η^5 -C₅Me₅)} (3c), and {Os(η^6 -*p*-MeC₆H⁴₄Pr)} (3d)] in yields of 48–94%. The substituted species, [5-Br-1-(η^6 -C₆Me₆)-1,2,4-RuC₂B₈H₉] (**5**-Br-**3**a) and [**7**-Br-1-(η^6 -C₆Me₆)-1,2,4-RuC₂B₈H₉] (**7**-Br-**3**a) have been obtained from a similar reaction involving [7-Br-*nido*-5,6-C₂B₈H₁₁] (**7**-Br-1) (combined yield 75%, separated by preparative HPLC). Each of the compounds **5**-Br-**3**a and **7**-Br-**3**a has been resolved into its enantiomers by use of chiral HPLC separation techniques. Analogous reactions between [{MLCl₂}₂] (2) and the [*nido*-6,9-C₂B₈H₁₀]²- anion (species 4²-) have produced a series of the isomeric symmetrical complexes [1-L-*closo*-1,2,3-MC₂B₈H₁₀] (5) [where {ML} = {Ru(η^6 -C₆Me₆)} (5a), {Ru(η^6 -*p*-MeC₆H⁴₄Pr)} (5b), {Rh(η^5 -C₅Me₅)} (**5c**) and {Os(η^6 -*p*-MeC₆H⁴₄Pr)} (5d)]; the 2-methyl substituted compound [2-Me-1-(η^5 -C₅Me₅)-*closo*-1,2,3-RhC₂B₈H₉] (**2**-Me-5**c**) has been prepared similarly using the [6-Me-*nido*-C₂B₈H₉]² – anion (species **2**-Me-4²-) as the starting diarbaborane. All these compounds are characterised by mass spectrometry and ¹¹B- and ¹¹H-NMR spectroscopy. Single-crystal X-ray diffraction studies have been carried out on compounds **5-Br-3a** and **2-Me-5c** as two representative examples of the compounds in series **3** and in series **5**. The {MC₂B₈ clusters of compounds **3** have four-membered open faces,

Keywords: Metalladicarbaborane; Eleven-vertex polyhedral; Isonido geometry; Optical resolution of boron cluster

^{*} Corresponding author. Tel: +44-0113-2336414; fax: +44-0113-2336565.

E-mail address: johnk@chem.leeds.ac.uk (J.D. Kennedy).

¹ Work by BŠ in Leeds while on leave of absence from the Institute of Inorganic Chemistry.

1. Introduction

Our two laboratories have a continuing and developing interest in the synthesis, NMR properties, structural characterisation, and reactions of the related pair of ten-vertex dicarbaboranes consisting of neutral 5,6*nido*-C₂B₈H₁₂ (1) [1–4] and the [*nido*-6,9-C₂B₈H₁₀]^{2–} anion (species 4^{2–}), and their derivatives [5,6]. Here we report on reactions resulting in metalladicarbaborane formation.

In the field of metallacarbaborane chemistry, the neutral species 1 and its anion $[nido-5, 6-C_2B_8H_{11}]^{-1}$ (species $1a^{-}$) have been previously used in the synthesis of a variety of eleven-vertex metalladicarbaborane cluster compounds. These include a set of compounds that were initially formulated as closed cluster species $[1-L_n]$ closo-1,2,4-MC₂B₈H₁₀] [7-10] but which in fact have quadrilateral $\{M(1)C(2)C(4)B(7)\}\$ open faces (see structure 3 in Scheme 1; also Fig. 3 below) and therefore can be regarded as of *isonido* geometry [9]. These have been recognised for $\{ML_n\} = \{Ru(C_6H_6)\}$ [8], $\{IrH(PMe_2 Ph_{2}$ [7], { $IrH(PPh_{3})_{2}$ [9], { $IrH(PMe_{3})_{2}$ } [10], and $\{IrH(AsMe_2Ph)_2\}$ [7]. In this reaction category also, it has been reported that the 5,6-dimethyl derivative of compound 1, viz. $[5,6-Me_2-nido-5,6-C_2B_{10}H_{10}]$ (5,6- Me_2-1) affords [2,4-Me_2-1-L-1,2,4-MC_2B_8H_8], where $\{ML\} = \{Ru(\eta^6 - C_6 Me_6)\},\$ {Ru(η^6 -*p*-MeC₆H^{*i*}₄Pr)}, $\{Rh(\eta^5-C_5Me_5)\}, \text{ and } \{Os(\eta^6-p-MeC_6H_4^iPr)\} [11,12],$ which also adopt the *isonido* cage geometry as in structure 3. It should be noted here that alternative routes exist for the formation of this type of compound, for example the cobaltadicarbaborane $[1-(\eta^5-C_5H_5)-1,2,4 CoC_2B_8H_{10}$ [13,14] has been prepared by the elimination of one {BH} vertex from 12-vertex [1-(η^{5} -C₅- Me_5)-closo-3,1,2-CoC₂ B_9H_{11}]. Also, it may be noted that a series of compounds of more conventional [15-19] nido eleven-vertex geometry has also been prepared from compound 1. These include [9-H-9,9-(PEt₃)₂-nido- $9,7,8-PtC_2B_8H_{11}$] [20,21], $[9-(\eta^5-C_5H_5)-nido-9,7,8-$ NiC₂B₈H₁₁] [22], [9,9,9-L₃-10,11-µH-*nido*-9,7,8-RhC₂- B_8H_9] (where $L = PEt_3$ and PPh_3) [7], and [9,9,9-L₃- $10,11-\mu H$ -*nido*-9,7,8-RhC₂B₈H₉] [where PR₃ = PEt₃, PPh_3 , and $P(p-tolyl)_3$ [7]. It may also be noted here that the bridged *nido* ten-vertex complex [µ-6,9-{Al(OEt₂)Et}-nido-6,9-C₂B₈H₁₀] [23] (approximate geometry as in schematic 5) and its double-cluster anionic analogue $[\mu-6,9-Al-(nido-C_2B_8H_{10})_2]^-$ [24] are also formed from anion 1^- , though this now involves a cluster rearrangement. Prepared from anion 1^- there is also another series of compounds [25], formulated as arachno eleven-vertex {MC₂ B_8 } species, of general formulation $[M(PPh_3)_n(5,6-C_2B_8H_{11})]$, where $\{M(PPh_3)_n\}$ $= \{Au (PPh_3)\}, \{Cu (PPh_3)\}, and \{Ag(PPh_3)_2\}, which$ also include the structurally characterised dimeric compound $[(PPh_3)Ag(C_2B_8H_{11})]_2$.

The symmetrical anion $[nido-6,9-C_2B_8H_{10}]^2$ (species 4^{2-}) [5,6] has similarly been used, now to synthesise a series of eleven-vertex dimetallacarbaboranes 5, of which the geometries now approximate more closely to the classical eleven-vertex *closo*-type as in schematic 5 in Scheme 1 (See also Fig. 2 below). These include species $[1-L_n-closo-1,2,3-MC_2B_8H_{10}]$, where $\{ML_n\} =$ $\{Co(\eta^{5}-C_{5}H_{5})\}$ [26], $\{Pt(PPh_{3})_{2}\}, \{Pt(SMe_{2})_{2}\}, \{Ni(cis-$ 1,2-dimethylaminocyclohexane) $[6], {Pt(PMe_2Ph)_2}$ [27,28], {Pt[P(OMe)_3]_2} [29] and naked Sn [30]. The eleven-vertex formal C_{2v} geometry can accommodate at least five categories of electronic structure [28,31]. Within the set of metalladicarbaboranes just listed, three categories are distinguished. The compounds with $\{ML_n\} = \{Pt(PPh_3)_2\}, \{Pt(SMe_2)_2\} \text{ and } \{Ni(cis-1,2-1)_{n=1}\}$ dimethylaminocyclohexane)} were originally formuas bridged *nido* ten-vertex lated [6] species $[\mu$ -6,9-(ML_n)-nido-6,9-C₂B₈H₁₀]. This simple bridged nido structure (the first category) has been confirmed for $\{ML_n\} = \{SnMe_2\}$ [29] and $\{Al(OEt_2)Et\}$ [23]. the $\{Pt(PPh_3)_2\},\$ ${Pt(SMe_2)_2}$ However, and $\{Pt[P(OMe)_{3}]_{2}\}$ derivatives, together with the nickel species and the naked Sn compound, are thought to approximate more to true *closo* (the second category) [28]. By contrast, the $\{Pt(PMe_2Ph)_2\}$ species is in a third category, with a closed cluster structure that is now more compact than in the two other categories just mentioned, and with what may now be a nido electron count [28,31]. Interestingly, the $\{Pt[P(OMe)_3]_2\}$ species can also be induced to adopt this third type of configuration by the utilisation of the steric effect of a C(2)phenyl substituent [28]. Again, alternative routes exist for the formation of compounds of this general $\{1,2,3 MC_2B_8$ type of configuration, with (a) $[1-(\eta^5-C_5H_5) 1,2,3-CoC_2B_8H_{10}$] and the structurally analogous double-cluster anion $[1,1'-Co(2,3-CoC_2B_8H_{10})_2]^-$ being obtained from polyhedral-expansion reactions from the neutral [closo-1,6- $C_2B_8H_{10}$] [32,33], with (b) the aluminium compounds, as mentioned in the previous paragraph, being obtained from neutral [nido-5,6-C₂B₈H₁₂] via cluster rearrangement [23,24], and (c) with [1- $(\eta^{5} C_5H_5$)-1,2,3-Co $C_2B_8H_{10}$] obtainable by thermal rearrangement from its 1,2,4 isomer [33].

The aim of the work reported in this present paper is to further develop a coherent systematic metalladicarbaborane chemistry based on the neutral dicarbaborane 5,6-*nido*- $C_2B_8H_{12}$ (1) and the [*nido*-6,9- $C_2B_8H_{10}$]²⁻ anion (species 4^{2-}), by the preparation of a more extended series of compounds of basic structural types **3** and **5** using ruthenium, rhodium and osmium as the basis of the metal centres. Here, we concentrate on the synthesis of basic parent (i.e. cage-unsubstituted) compounds, although some simple extensions to substitution chemistry are also reported. Extensive substituent modification is known to induce modifications in structure, arising from both electronic and steric effects [28,29,31], which we currently investigate further and hope to report on in due course. The general structures and numbering schemes of compounds discussed in this work are in Scheme 1 below.

2. Experimental

2.1. General

All reactions were carried out with use of standard vacuum or inert-atmosphere techniques [34], although some subsequent operations, e.g. analytical thin layer chromatography (TLC) and preparative TLC, were carried out in air. The starting neutral carbaboranes $[nido-5, 6-C_2B_8H_{12}]$ (1) and $[7-Br-nido-5, 6-C_2B_8H_{11}]$ (7-Br-1) [2], together with the sodium salts of the anions $[nido-6,9-C_2B_8H_{10}]^{2-}$ (species 4²⁻) [5] and [6-Me-nido- $(6,9-C_2B_8H_9)^{2-}$ (species 6-Me-4²⁻) [28], were prepared by literature methods. Hexane and dichloromethane were distilled from calcium hydride, and chloroform from phosphorus pentoxide, prior to use. Other compounds were of reagent or analytical grade and were used as purchased from commercial sources. All evaporations of solvents were carried out using standard rotary evaporation techniques and vacuum filtrations were performed using a standard Schlenk apparatus.

2.2. Chromatography

Preparative thin-layer chromatography (TLC) was carried out using silica gel (Fluka, type GF 254) as the stationary phase on plates of dimensions $200 \times 200 \times 1$ mm, made on glass formers from aqueous slurries followed by drying in air at 80°C. The purity of individual chromatographic fractions was checked by analytical TLC on Silufol (Kavalier, silica gel G on aluminium foil; detection by diiodine vapour followed by 2% aqueous AgNO₃ spray). For compounds 5-Br-3a and 7-Br-3a preparative high-pressure liquid chromatography (HPLC) separations were performed using a stainless-steel column $[250 \times 25 \text{ mm internal diame-}]$ ter; Separon SGX (7 µm, Tessek Ltd., Prague); mobile phase 78:22 hexanes– CH_2Cl_2 ; flow rate 30 cm³ min⁻¹; detection by UV at 254 nm]. Chiral HPLC [35,36] was performed on a directly-bonded β-cyclodextrin column $(250 \times 8 \text{ mm internal diameter; mobile phase } 68:32$ MeOH-H₂O; flow rate 0.8 cm³ min⁻¹; detection by UV at 270 nm) used essentially as detailed in recent papers on this technique from our laboratories [37-44]. Components were collected from the start to the top of the detector response peak for the initially eluted enantiomer, and from the top of the second peak to the end for the second enantiomer. The HPLC capacity factor k' was defined as in Ref. [45], with HPLC selectivity factor α and resolution R_s defined as in Ref. [36].

2.3. Physical measurements and spectroscopy

Melting points were measured in sealed capillaries under nitrogen and are uncorrected. Low-resolution mass spectra were obtained using JEOL HP-5985 or VG Autospec instruments (E.I. ionisation at 70 eV). ¹H- and ¹¹B-NMR spectroscopy was performed at 2.35, 9.4, and 11.75 T on JEOL FX100, Bruker AM 400, and Varian XL-500 instruments, respectively. The $[^{11}B-^{11}B]$ -COSY and $^{1}H-\{^{11}B(\text{selective})\}$ NMR experiments were essentially as described in other recent papers from our laboratories [46,47]. Chemical shifts δ are given in ppm to high frequency (low field) of $\Xi = 32.083971$ MHz (nominally F₃B.OEt₂ in CDCl₃) for ¹¹B (quoted ± 0.5 ppm) and $\Xi = 100$ MHz (SiMe₄) for ¹H (quoted ± 0.05 ppm), Ξ being defined as in Ref. [48]. Solvent resonances were used as internal secondary standards. Coupling constants ${}^{1}J({}^{11}B-{}^{1}H)$ are taken from resolution-enhanced ¹¹B spectra with digital resolution 8 Hz and are given in hertz. Circular dichroism (CD) spectra were measured for solutions in MeOH on an Auto Dichrograph V instrument (Jobin Yvon) using quartz cells with optical path-lengths of 1 cm.

Table 1

272

Properties of the products from reactions between $nido-5,6-C_2B_8H_{12}$ (compound 1) and organometallic complexes [LMCl₂]₂ (compounds 2a-2d)

Reaction conditions			Products				
Starting complex	Time (h)	Product (s)	Yield (%)	M.p. (°C)	R _F	$m/z_{\rm max}$	
2a	18	3a	94	ca. 200 ^a	0.16 ^b , 0.43 ^c	386	
2a ^d	1	5-Br-3a	60		0.50 °	466	
		7-Br-3a	15			466	
2b	1.5	3b	89	ca. 190 ^a	0.18 ^b , 0.40 ^c	358	
2c	1	3c	30	ca. 170 ^a	0.67 ^b	360	
2d	24	3d	48	153	0.30 ^b	446	

^a Approximate transition temperature (to give compounds of type 5) without melting.

^b 50% hexane in CH₂Cl₂.

° 100% CHCl₃.

^d The substituted compound 7-Br-1 used as the starting carbaborane; products 5-Br-3a and 7-Br-3a separated by preparative HPLC.

^e 50% hexane in CHCl₃.

2.4. General preparation of $1-(\eta^6-Arene)$ and $1-\eta^5$ -cyclopentadiene)-closo-1,2,4-metalladicarbaundecaboranes (3)

Typically, N, N, N', N'-tetramethylnaphthalene-1,8-diamine (tmnda) (214 mg, 1 mmol) was added to a solution of $[nido-5, 6-C_2B_8H_{12}]$ (1) (61 mg, 0.5 mmol) in CHCl₃ or CH₂Cl₂ (50 cm³) and the solution was stirred for ca. 10 min. The appropriate organometallic halide $[MCl_2L]_2$ (2a, 2b, 2c or 2d; 0.25 mmol) was then added, and the mixture was stirred at room temperature (r.t.) for between one and 24 h. (see Table 1), whereupon a dark orange colour developed. The mixture was then filtered through a short column of silica gel (TLC grade, ca. 2.5×5 cm) and the filtrate evaporated to dryness. The residue was washed with hexane (ca. 50 cm³) and the remaining orange solid subjected to column or preparative TLC chromatography, using the solvent mixtures as in Table 1 as the liquid phases. The main dark orange band was isolated by evaporation (column chromatography) or by extraction with CH₂Cl₂ followed by evaporation (TLC separation). The crude products were then crystallised from a concentrated CH₂Cl₂ solution that was over-layered by a ca. twofold amount of hexane, to obtain dark yellow or dark orange crystals (yields 48-94%, see Table 1), which were identified as the appropriate compounds 3a, 3b, 3c or 3d by mass spectrometry and NMR spectroscopy (see Tables 1 and 5).

2.5. Preparation of 5-bromo-1-(η^6 -hexamethylbenzene)closo-1,2,4-metalladicarbaundecaborane (**5-Br-3a**) and 7-bromo-1-(η^6 -hexamethylbenzene)-closo-1,2,4metalladicarbaundecaborane (**7-Br-3a**), and their chiral resolution

The mixture of compounds **5-Br-3a** and **7-Br-3a** (consisting of ca. 80 mol% of **5-Br-3a** and 20 mol% of **7-Br-3a**, as assessed by integrated ¹¹B-NMR spectro-

Fig. 1. CD spectra in methanol solution. Upper diagram: the firsteluted enantiomer (1A) (260 μ M) and the second-eluted enantiomer (1B) (300 μ M) of [5-Br-1-(η^6 -C₆Me_6)-1,2,4-RuC_2B_8H_9] (**5-Br-3a**). Lower diagram: the first-eluted enantiomer (2A) (220 μ M) and the second-eluted enantiomer (2B) (260 μ M) of [7-Br-1-(η^6 -C₆Me_6)-1,2,4-RuC_2B_8H_9] (7-Br-3a). It is of interest that the first-eluted enantiomers 1A and 2A of the two isomeric components **5-Br-3a** and **7-Br-3a** exhibit opposite orientations of their Cotton curves.

273

Reaction conditions		Products				
Starting complex	Time/h	Product(s)	Yield/%	$R_{ m F}$ $^{ m a}$	m/z _{max} ^b	
2a	12	5a	45	0.11	386	
2b	18	5b	39	0.13	358	
2c	4	5c	68	0.18	360	
2c	4	2-Me-5c °	64	0.20	374	
2d	74	5d	54	0.20	446	

Products from reactions between [nido-6,9-C₂B₈H₁₀]Na₂ (Na⁺ salt of compound 4²⁻) and organometallic complexes [LMCl₂]₂ (2a-2d)

 a 50% hexane in $CH_2Cl_2.$

^b EI mode, 70 eV.

Table 2

^c The substituted anion 6-Me-4²⁻ used as the starting carborane.

scopy) was prepared as in the preceding experiment (combined yield 75%), using $[7-Br-nido-5, 6-C_2B_8H_{11}]$ (7-Br-1) as the starting carbaborane in place of unsubstituted compound 1. A sample of this mixture (ca. 200 mg) was separated into the two individual compounds 5-Br-3a and 7-Br-3a (pure yields 150 and 35 mg, respectively) by preparative HPLC (k' values 10.8 and 11.9, respectively; under the same conditions k' was 1.6 for nitrobenzene as external standard). A small sample of each of the pure compounds 5-Br-3a and 7-Br-3a thus separated was resolved into its enantiomers by repeated chiral HPLC (concentration 0.25 mg cm⁻³; injection volume 80 µl). For the two enantiomers of compound **5-Br-3a**, the capacity factors $k'_{\rm A}$ and $k'_{\rm B}$ for the first and second eluted isomers A and B were 4.27 and 4.70 respectively, with selectivity $\alpha = 1.09$ and resolution $R_{\rm s} = 0.85$. For the two enantiomers of compound 7-Br-**3a** the values were $k'_{\rm A} = 3.66$, $k'_{\rm B} = 4.11$, $\alpha = 1.12$ and $R_{\rm s} = 1.0$. For each of these chiral separations, the eluents from 15 injections were collected together and evaporated to dryness. The integrity of the components of the individual enantiomeric pairs was assessed by analytical HPLC on the same column, and also by their equal and opposite CD spectra (concentration ca. 0.1 mM in methanol, see Fig. 1). For each of compounds 5-Br-3a and 7-Br-3a the later eluting enantiomer B was assessed as being ca. 10% less enantiomerically pure than the initially eluted isomer A.

2.6. Thermal rearrangement of $1-(\eta^6-arene and \eta^5-cyclopentadiene)-closo-1,2,4-metalladicarbaunde-caboranes ($ **3a**,**3b**,**3c**, and**3d**) to give their corresponding 1,2,3-isomers (**5a**,**5b**,**5c**and**5d**)

Each of the individual compounds **3a**, **3b**, **3c**, and **3d** (50 μ mol) was sealed into a thick-wall glass capillary (internal diameter ca. 2 mm) and heated at 225–235°C for 10 min. The tube was then opened and the contents subjected to preparative TLC using 50:50 hexane–CH₂Cl₂ as the liquid phase. In each case one predomi-

nant yellow product was obtained. These individual yellow TLC bands were isolated by extraction with CH_2Cl_2 and crystallised from concentrated CH_2Cl_2 solutions that were over-layered by ca. twofold amounts of hexane to obtain orange crystals of the *closo*-1,2,3-metalladicarbaundecaboranes **5a**–**5d** in yields of 78, 80, 75 and 79% respectively, identified by mass spectrometry and NMR spectroscopy (see Tables 2 and 6).

2.7. General preparation of the 1-(η^6 -arene) and the 1-(η^5 -cyclopentadiene)-closo-1,2,3-metalladicarbaundecaboranes (**5a-5d**) from the [nido-6,9-C₂B₈H₁₀]²⁻ anion (species 4²⁻)

Typically, the appropriate starting organometallic complex [MCl₂L]₂ (2a, 2b, 2c or 2d) (250 µmol), was added to a stirred suspension of the sodium salt of the anion $[nido-6,9-C_2B_8H_{10}]^2$ (species 4^{2-}) (84 mg, 500 μ mol) in CH₂Cl₂ (30 cm³), and the resulting mixture stirred at room temperature (r.t.) for between one and 12 h. (see Table 2), whereupon a yellow colour developed. The mixture was then filtered through a short column of silica gel (TLC grade; ca. 2.5×5 cm) and the filtrate was evaporated to dryness. The residue was washed with hexane (ca. 25 cm³) and the remaining orange solid subjected to preparative TLC using 50:50 hexane $-CH_2Cl_2$ as the liquid phase. In each case the main yellow component was isolated by extraction with CH₂Cl₂ and the crude product crystallised from a concentrated CH₂Cl₂ solution that was over-layered by a ca. twofold amount of hexane, to obtain yellow crystals which were identified as the appropriate compound 5a, 5b, 5c or 5d by mass spectrometry and NMR spectroscopy (yields 39-68%, see Tables 2 and 6). The C-methyl substituted starting dicarbaborane anion [6-Me-nido-6,9-C₂B₈H₉]²⁻(species **6-Me-4**²⁻) was similarly employed in place of the unsubstituted anion 4^{2} to prepare the methylated metalladicarbaborane derivative $[2-Me-1-(\eta^5-C_5Me_5)-closo-1,2,3-RhC_2B_8H_9]$ (2-Me-5c).

2.8. X-ray crystallography

Crystals of $[5-Br-1-(\eta^6-C_6Me_6)-1,2,4-RuC_2B_8H_9]$ (5-**Br-3a**) and $[2-Me-1-(n^5-C_5Me_5)-closo-1,2,3-RhC_2B_8H_0]$ (2-Me-5c) suitable for single crystal X-ray diffraction studies were grown from CH₂Cl₂-hexane mixtures as described in the preceding paragraphs. For the β bromo-substituted compound 5-Br-3a all crystallographic measurements were made at ambient temperature on a Nicolet P3/F diffractometer operating in the $\omega - \theta$ scan mode using graphite-monochromated $Mo-K_{\alpha}$ radiation. The structure was determined using standard heavy-atom techniques and was refined by full-matrix least-squares using SHELX-97 [49]. All nonhydrogen atoms were refined with anisotropic displacement parameters. The methyl hydrogen atoms were placed in calculated positions (C-H = 96 pm) and refined with an overall isotropic displacement parameter, whereas the metalladicarbaborane cluster hydrogen atoms were located on a Fourier difference map and were freely refined. The weighting scheme w = $[\sigma^2(F_{\alpha}) + 0.0008(F_{\alpha})^2]^{-1/2}$ was used. Full details of crystal data, data collection, and structure solution and refinement, are given in Table 3, and are deposited with the CCDC, deposition no. 14316. For the C-methyl substituted compound **2-Me-5c**, the experimental details of the X-ray work have previously been presented in a preliminary communication (CCDC reference acronym JEZPAF # ADATE 19910704) [50], but crys-

Table 3

Crystal data and structure solution parameters for $[5\text{-Br-1-}(\eta^6\text{-}C_6Me_6)\text{-}closo\text{-}1,2,4\text{-}Ru C_2B_8H_9]$ (compound **5-Br-3a**) and [2-Me-1- $(\eta^5\text{-}C_5Me_5)\text{-}closo\text{-}1,2,3\text{-}RhC_2B_8H_9]$ (compound **2-Me-5c**)

Compound	5-Br-3a	2-Me-5c
CCDC deposition number	144316	144317
Formula	C ₁₄ H ₂₇ B ₈ BrRu	$C_{13}H_{27}B_8Rh$
Size (mm)	$0.8 \times 0.5 \times 0.4$	$0.55 \times 0.45 \times 0.3$
Molecular weight	462.83	372.75
Crystal system	Monoclinic	Monoclinic
Space group	$P2_1/n$	$P2_{1}/c$
a (pm)	890.6(1)	878.7(2)
<i>b</i> (pm)	1559.3(2)	1500.3(3)
c (pm)	1453.6(2)	1366.1(3)
β (°)	105.48(1)	91.85(2)
$V (nm^3)$	1.9453(4)	1.7999(6)
$D_{\rm calc} ({\rm g \ cm^{-3}})$	1.58	1.38
Z	4	4
$\mu ({\rm cm}^{-1})$	28.52	Empirical (DIFABS)
Number of data	3598	3382
collected		
Number observed	2893	2861
Number of parameters	260	242
Weighting parameter g	0.0008	0.00025
R	0.0447	0.0235
R _w	0.1168	0.0591
$\Delta \rho$ (max., min.) (e Å ⁻³)	+1.396, -1.134	+0.321, -0.385

tallographic parameters are also included here in Table 3 for convenience of reference. The original data were processed via SHELX-76; they have been reprocessed using SHELX-97 for this present presentation in order to facilitate comparison; CCDC deposition no. 144317.

3. Results and discussion

3.1. Syntheses

We have found that the parent (i.e. unsubstituted) metalladicarbaboranes of the general asymmetrical cluster constitution $[1-L-1,2,4-MC_2B_8H_{10}]$ (3, closo eleven-vertex numbering system) [where $\{ML\}$ = {Ru(η^{6} -C₆Me₆)} (**3a**), {Ru(η^{6} -*p*-MeC₆H^{*i*}₄Pr)} (**3b**), $\{Rh(\eta^5-C_5Me_5)\}$ (3c), and $\{Os(\eta^6-p-MeC_6H_4^iPr)\}$ (3d)] can be prepared in the same manner as their 2,4-C,Cdimethylated analogues [11,12] when the parent nido-5,6- $C_2B_8H_{12}$ dicarbaborane 1 is used as the starting carbaborane material (see Scheme 1), rather than the 5,6-dimethyl-substituted analogue [5,6-Me₂-nido-5,6- $C_2B_8H_{10}$]. This is as expected. Thus, reactions between compound 1 and the organometallic complexes $[{MCl_2L}_2]$ (2) in chloroform or dichloromethane at ambient temperature for between one and 24 h. gave yields of between 45 and 94% (Table 1) according to the stoichiometry as in Eq. (1):

$2C_2B_8H_{12}$ (1) + [{MLCl₂}] (2) + 4tmnda

$$\rightarrow 2[LMC_2B_8H_{10}] (3) + 4[tmndaH]Cl$$
(1)

The 7-brominated derivative of compound 1, [7-Br*nido*-5,6-C₂B₈H₁₁] (**7-Br-1**), and $[RuCl_2(\eta^6-C_6Me_6)]_2$ (2a) reacted similarly, but yielded a mixture of two monobromo derivatives in ca. 4:1 ratio (as assessed by integrated ¹¹B-NMR spectroscopy). These are formulated as $[5-Br-1-(\eta^6-C_6Me_6)-1,2,4-RuC_2B_8H_9]$ (5-Br-3a) $[7-Br-1-(\eta^6-C_6Me_6)-1,2,4-RuC_2B_8H_9]$ (7-Br-3a) and (combined yield 75%). These two components could be individually separated by preparative HPLC (Separon SGX silica gel support, 22:78 hexane-CH₂Cl₂). Both compounds are chiral² and each of them was further resolved, now into its individual enantiomer components (σ)-**5-Br-3a** and (ρ)-**5-Br-3a** (curves 1A and 1B in the upper part of Fig. 1), and (σ)-7-Br-3a and (ρ)-7-Br-**3a** (curves 2A and 2B in the bottom part of Fig. 1) by accumulation of evaporates following repeated chiral HPLC [34,35] on an analytical scale (β -cyclodextrin, 32% H₂O in MeOH). The individual mirror-image

 $^{^2}$ In formal IUPAC nomenclature, the two enantiomers of compound **5-Br-3a** are described as [5-Br-1-($\eta^6-C_6Me_6$)-1,2,4-RuC_2B_8H_9] and [4-Br-1-($\eta^6-C_6Me_6$)-1,2,5-RuC_2B_8H_9], and those of compound **7-Br-3a** are [7-Br-1-($\eta^6-C_6Me_6$)-1,2,4-RuC_2B_8H_9] and [6-Br-1-($\eta^6-C_6Me_6$)-1,2,5-RuC_2B_8H_9]. Here we use the σ/ρ form of differentiation as in Refs. [51,52].

equal-and-opposite CD spectra obtained for these enantiomeric pairs indicated reasonably clean separation (Fig. 1). Interestingly, both compounds exhibited multiple Cotton effects. As in other cases so far reported of enantiomeric separations of chiral boron-containing cluster compounds using chiral HPLC [35,36], neither the interpretation of individual Cotton effects nor the absolute configuration (i.e. the assignment of structure and CD spectra to individual σ - and ρ configurations) [51-53] has been determined. Such work will clearly be of interest, and further work in our laboratories is aimed at the isolation of larger quantities of pure enantiomers of these and other suitable species in order to determine absolute configurations [44] and specific rotations, to permit mechanistic and stereochemical studies, and to open up the general area of potential applications of these stereochemically asymmetric species in which the chirality arises from the general asymmetry rather than from discrete chiral centres [35,36].

All the unsubstituted metalladicarbaboranes of the asymmetrical $[1-L-1,2,4-MC_2B_8H_{10}]$ cluster type 3 were found to undergo a clean cluster rearrangement when heated at 225–235°C for 10 min. The products were the members of the corresponding series of isomeric symmetrical metalladicarbaboranes [1-L-closo-1,2,3- $MC_2B_8H_{10}$] (5), where $\{ML\} = \{Ru(\eta^6-C_6Me_6) (5a),$ $\{Ru(\eta^{6}-p-MeC_{6}H_{4}^{i}Pr)\}$ (5b), $\{Rh(\eta^{5}-C_{5}Me_{5})\}$ (5c), and $\{Os(\eta^6 - p - MeC_6H_4^iPr)\}$ (5d)] (see Scheme 1). The same cage rearrangement has also been reported previously with cobalt and ruthenium species, specifically neutral $[1-(\eta^5-C_5H_5)-1,2,4-CoC_2B_8H_{10}]$, the $[1,1'-Co(2,4-CoC_2-1)]$ B_8H_{10} ⁻]⁻ anion [33,54] and neutral [2,4-Me₂-1-(η^6 -p- $MeC_6H_4^iPr$)-1,2,4- $RuC_2B_8H_{10}$] (**2,4-Me_2-3b**) [11,12]. Aspects of the relative stability of the closed $\{1,2,3-MC_2B_8\}$ system of compounds 5 versus the less stable asymmetric open $\{1,2,4-MC_2B_8\}$ system of compounds 3 are briefly discussed below.

These reactions of compounds 3 to give compounds 5 contrast to the thermolyses of the C,C-dimethyl substituted rhodium and osmium analogues [2,4-Me₂-1-(n⁵- C_5Me_5)-1,2,4-Rh $C_2B_8H_8$] (2,4-Me₂-3c) and [2,4-Me₂-1- $(\eta^{6}-p-MeC_{6}H_{4}^{i}Pr)-1,2,4-OsC_{2}B_{8}H_{8}]$ (2,4-Me₂-3d), which have been reported in a preliminary note [55] to give the structurally different isomers [8,10-Me₂-2-L-2,8,10- $MC_2B_8H_8$], where $\{ML\} = \{Rh(\eta^{5}-C_{5}Me_{5})\}$ and $\{Os(\eta^6-C_6Me_6)\}$ (6c and 6d, respectively, *nido* elevenvertex numbering system). Even though they have formal closo electron counts, the cluster geometries of compounds 6c and 6d in fact better approximate to classical [15-17] nido eleven-vertex, albeit with an interesting quasi-arachno geometrical feature, in that there is a long interboron vector in the open face, viz. B(7)-B(11) at 2.084(9) Å in the osmium compound 6d [55], i.e. a structural tendency towards eleven-vertex arachno [schematic structure 6]. It is not clear whether this interesting isomerism is controlled by the steric or the electronic influence of the C-methyl substituents, or to what extent a higher metal oxidation state might be involved [28,31,55,56].

An alternative route to the more symmetrical complexes [1-L-*closo*-1,2,3-MC₂B₈H₁₀] of type **5**, where {ML} = {Ru(η^6 -C₆Me₆)} (**5a**), {Ru(η^6 -*p*-MeC₆Hⁱ₄Pr)} (**5b**), {Rh(η^5 -C₅Me₅)} (**5c**), and {Os(η^6 -*p*-MeC₆Hⁱ₄Pr)} (**5d**), is the reaction between the organometallic halides **2a**-**2d** and the disodium salt of the dianion [*nido*-6,9-C₂B₈H₁₀]²⁻ (species **4**²⁻) [5,6] (see again Scheme 1):

$$2[C_2B_8H_{10}]^2 - (4^2 -) + [\{MLCl_2\}_2] \rightarrow 2[LMC_2B_8H_{10}] (5) + 4Cl^-$$
(2)

This reaction is carried out in dichloromethane or chloroform solution at ambient temperature for between 4 h and 3 days, with yields of compounds 5 ranging from 45 to 68% (Table 2). Yields were variable, but the highest yields (Table 2) were found with samples of anion 4^{2-} that had been freshly prepared. The C-methyl substituted dianion [6-Me-nido-6,9- $C_2B_8H_9$ ²⁻ (6-Me-4²⁻) [28] reacted in a similar manner to give $[2-Me-1-(\eta^5-C_5Me_5)-closo-1,2,3-RhC_2B_8H_9]$ (2-Me-5c) (64%). Interestingly, compound 2-Me-5c has also been isolated as one of the predominant products from the complex reaction between MeNC and [6- $(\eta^{5} C_5Me_5$ -*nido*-6-RhB₉H₁₃] in which the cluster carbon atom must derive from the MeNC residue [50].

As seen from Scheme 1, the formation of compounds of type 3 and 5 as in the stoichiometric reactions of Eq. (1) and Eq. (2) looks at first sight to be consistent with a straightforward insertion of the metal centre into the open hexagonal face of the dicarbaborane cages of types 1 and 4^{2-} . However, this would predict the formation exclusively of the 5-bromo derivative 5-Br-3a from the reaction of $[7-Br-nido-5,6-C_2B_8H_{11}]$ (7-Br-1), whereas the concomitant formation of the 7-bromo isomer 7-Br-3a shows that a cage rearrangement has occurred. That such a rearrangement may be occurring generally in the reactions of the simple unsubstituted species 1^- and 4^{2-} therefore cannot be excluded (for rearrangements in unmetallated ten-vertex carbaborane series see, for example, Refs. [57–60]). The $3 \rightarrow 5$ and $3 \rightarrow 6$ thermal rearrangements mentioned above emphasise the general propensity for cluster rearrangement in this type of eleven-vertex system. Thermodynamically

Fig. 2. ORTEP representation of the crystallographically determined molecular structure of [2-Me-1-(η^5 -C₅Me₅)-*closo*-1,2,3-RhC₂B₈H₉] (2-Me-5c). Although in solution there is free rotation of the {C₅Me₅} group relative to the {RhC₂B₈H₉Me} unit to give a time-average C_s symmetry, in the crystal the relative orientation of the {C₅Me₅} and the {RhC₂B₈H₉Me} residues generates chirality, and in the solid state the compound crystallises as the racemate, containing both enantiomers in the unit cell.

Fig. 3. ORTEP representation of the crystallographically determined molecular structure of [5-Br-1- $(\eta^6-C_6Me_6)$ -1,2,4-RuC₂B₈H₉] (**5-Br-3a**). Although of *isonido* configuration with a four-membered open face (see text), the structure is numbered according to the eleven-vertex *closo* convention. The compound crystallises as the racemate, containing both enantiomers in the unit cell.

favoured migrations of carbon atoms in carbaborane clusters to carbons-apart configurations, and also to give configurations in which the carbon atoms occupy sites of lower cluster connectivity, have long been recognised [61]. In this general context it is of interest to note a recent renaissance of interest [62–66] in the long recognised [67,68] isomerisations of the corresponding twelve vertex { MC_2B_9 } system.

The constitutions of all the compounds of type **3** and **5** have been determined unambiguously by ¹¹B and ¹H spectroscopy and by mass spectrometry, with the general structural types **3** and **5** confirmed by single crystal X-ray diffraction analyses of the two substituted species [5-Br-1-(η^6 -C₆Me₆)-1,2,4-RuC₂B₈H₉] (**5-Br-3a**) and [2-Me-1-(η^5 -C₅Me₅)-*closo*-1,2,3-RhC₂B₈H₉] (**2-Me-5c**).

3.2. X-ray diffraction studies

The solid-state molecular structures of the substituted compounds [2-Me-1-(η^5 -C₅Me₅)-*closo*-1,2,3-RhC₂B₈H₉] (**2-Me-5c**) and [5-Br-1-(η^6 -C₆Me₆)-1,2,4-RuC₂B₈H₉] (**5-Br-3a**) were determined by singlecrystal X-ray diffraction analyses and are depicted in Figs. 2 and 3, respectively. Crystal data and structure solution parameters are in Table 3, details of structure refinement are in Section 2, and selected interatomic distances and angles are given in Table 4.

Fig. 2 shows the molecular structure of the 2-methylsubstituted derivative of compound 5c, viz. [2-Me-1- $(\eta^{5}-C_{5}Me_{5})-closo-1,2,3-RhC_{2}B_{8}H_{9}]$ (2-Me-5c). The observed structure is at first sight in agreement with a regular eleven-vertex 24-electron closo geometry [15-17], approximating to an idealised $C_{2\nu}$ {MC₂B₈} cluster as conventionally expected [15-17,69,70], and as also previously found for other structurally determined members of this series such as $[1-(\eta^5-C_5H_5)-closo-1,2,3 CoC_2B_8H_{10}$] [32,33], the [closo-1,1'-Co-(2,3- $CoC_2B_8H_{10})_2$ anion [32,33], and [2,3-Me₂-1-(η^6 -p- $MeC_6H_4^iPr$)-*closo*-1,2,3-RuC₂B₈H₈] [12]. The cluster carbon atoms reside at the low-connectivity 2- and 3-positions and, in contrast to compounds 3 above, all mutually adjacent cluster atoms are within bonding distances. However, within this symmetrical *closo*-type ${MC_2B_8}$ unit of configuration 5 the metal centre is incorporated significantly more compactly into the cluster than it is in $[1,1-\{P(OMe)_3\}_2-1,2,3-PtC_2B_8H_{10}]$ [29] and [1,1-(PPh₃)₂-1,2,3-PtC₂B₈H₁₀] [6,28], which are thought to be more conventionally closo [28]. Further, it is incorporated very much more compactly than in the 6,9-bridged nido ten-vertex species [1-Et-1-(OEt₂)- $1,2,3-AlC_2B_8H_{10}$ [23]. The dimensions within the metalto-cluster bonding-sphere are much more comparable to those of the more compact species [2-Me-1,1- $(PMe_2Ph)_2-1,2,3-PtC_2B_8H_9]$, in which the compactness has been proposed [28] to arise from a platinum(IV) four-electron four-orbital contribution to the cluster which would thereby have a 26-electron nido electron count whilst still retaining the closed C_{2v} -based configuration [28,31]. The true 24-electron closo elevenvertex cluster structure itself is recognised to be fragile (see next paragraph) [31], and so, like [2-Me-1,1-(PMe₂Ph)₂-1,2,3-PtC₂B₈H₉] just mentioned, the struc-

Table 4

Selected interatomic distances (pm) and angles (°) for [5-Br-1-(η^6 -C₆Me₆)-*closo*-1,2,4-RuC₂B₈H₉] (compound **5-Br-3a**) and [2-Me-1-(η^5 -C₅Me₅)-*closo*-1,2,3-RhC₂B₈H₉] (compound **2-Me-5c**)

Compound 5-Br-3a			
Distances			
C(2)-Ru(1)	209.8(7)	C(2)–C(4)	147.5(10)
C(2)–B(5)	159.1(11)	C(2)–B(8)	169.5(12)
B(3)-Ru(1)	206.8(9)	B(3)–B(6)	172.1(12)
B(3) - B(7)	172.6(11)	B(3)–B(9)	174.2(12)
C(4) - Ru(1)	265.8(9)	C(4)–B(7)	172.3(11)
C(4)–B(8)	170.8(13)	C(4)–B(10)	163.6(13)
B(5)-Ru(1)	226.5(8)	B(5) - Br(5)	197.4(8)
B(5) - B(6)	180.7(10)	B(5)–B(8)	182.5(11)
B(5)-B(11)	179.4(12)	B(6)–B(9)	MTP?
B(6) - Ru(1)	227.8(9)	B(6)–B(11)	181.2(11)
B(7) - Ru(1)	236.7(9)	B(7)–B(9)	188.8(12)
B(7) - B(10)	183.3(12)	B(8)–B(10)	173.1(13)
B(8)–B(11)	171.2(12)	B(9)-B(10)	173.9(12)
B(9) - B(11)	173.8(11)	B(10)-B(11)	180.2(13)
C(ring)-Ru(1) mean	225.6(5)		
Angles			
$C(2) = R_{11}(1) = R(3)$	105 9(4)	$C(4) = R_{11}(1) = C(2)$	33 6(2)
C(4) = Ru(1) = B(3)	80 5(3)	C(4) = Ru(1) = B(5)	61.3(3)
B(6) = Ru(1) = C(2)	83.0(3)	B(6) = Ru(1) = B(3)	46 3(3)
B(6) - Ru(1) - C(4)	80.3(3)	B(6) = Ru(1) = B(5)	46.9(2)
B(6) = Ru(1) = B(7)	70.0(3)	B(7) = Ru(1) = C(2)	72 2(3)
B(7) = Ru(1) = B(3)	45.2(2)	$\mathbf{D}(1)$ $\mathbf{Ru}(1)$ $\mathbf{C}(2)$	72.2(3)
$Compound 2 Ma 5a^{a}$			
Distances			
$C(2)$ _R h(1)	211 5(4)	C(2) = B(4)	157.4(7)
C(2)-Rh(1) C(2)-B(5)	211.5(4)	C(2)-B(4) C(2)-B(8)	157.4(7)
C(2)-Rh(1) C(2)-B(5) C(2)-C(2)(Me)	211.5(4) 157.7(6) 152.0(6)	C(2)-B(4) C(2)-B(8) C(3)-B(1)	157.4(7) 166.0(6) 208.9(4)
C(2)-Rh(1) C(2)-B(5) C(2)-C(2)(Me) C(3)-B(6)	211.5(4) 157.7(6) 152.0(6) 157.6(6)	C(2)-B(4) C(2)-B(8) C(3)-Rh(1) C(3)-B(7)	157.4(7) 166.0(6) 208.9(4) 156.7(7)
C(2)-Rh(1) C(2)-B(5) C(2)-C(2)(Me) C(3)-B(6) C(3)-B(9) C(3)	211.5(4) 157.7(6) 152.0(6) 157.6(6) 164.8(6)	C(2)-B(4) C(2)-B(8) C(3)-Rh(1) C(3)-B(7) B(4)-B(1)	157.4(7) 166.0(6) 208.9(4) 156.7(7) 236.6(9)
$\begin{array}{c} C(2)-Rh(1)\\ C(2)-B(5)\\ C(2)-C(2)(Me)\\ C(3)-B(6)\\ C(3)-B(9)\\ B(4)-B(7) \end{array}$	211.5(4) 157.7(6) 152.0(6) 157.6(6) 164.8(6) 192.7(7)	C(2)–B(4) C(2)–B(8) C(3)–Rh(1) C(3)–B(7) B(4)–Rh(1) B(4)–R(8)	157.4(7) 166.0(6) 208.9(4) 156.7(7) 236.6(9) 181.0(7)
$\begin{array}{c} C(2)-Rh(1)\\ C(2)-B(5)\\ C(2)-C(2)(Me)\\ C(3)-B(6)\\ C(3)-B(6)\\ B(4)-B(7)\\ B(4)-B(7)\\ B(4)-B(10)\\ \end{array}$	211.5(4) 157.7(6) 152.0(6) 157.6(6) 164.8(6) 192.7(7) 180.9(7)	C(2)–B(4) C(2)–B(8) C(3)–Rh(1) C(3)–B(7) B(4)–Rh(1) B(4)–B(8) B(5)–B(b(1))	157.4(7) 166.0(6) 208.9(4) 156.7(7) 236.6(9) 181.0(7) 237.6(5)
C(2)-Rh(1) C(2)-B(5) C(2)-C(2)(Me) C(3)-B(6) C(3)-B(9) B(4)-B(7) B(4)-B(10) B(5)-B(6) C(2)-Rh(1) B(5)-B(6) C(2)-Rh(1) C(2)-Rh(1) C(2)-Rh(1) C(2)-Rh(1) C(2)-Rh(1) C(2)-Rh(1) C(2)-Rh(1) C(2)-Rh(1) C(2)-Rh(1) C(2)-R(5) C(2)-C(2)(Me) C(3)-R(5) C(3)-R(5	211.5(4) 157.7(6) 152.0(6) 157.6(6) 164.8(6) 192.7(7) 180.9(7) 190.4(7)	C(2)-B(4) C(2)-B(8) C(3)-Rh(1) C(3)-B(7) B(4)-Rh(1) B(4)-B(8) B(5)-Rh(1) B(5)-R(8)	157.4(7) 166.0(6) 208.9(4) 156.7(7) 236.6(9) 181.0(7) 237.6(5) 181.8(7)
C(2)-Rh(1) C(2)-B(5) C(2)-C(2)(Me) C(3)-B(6) C(3)-B(9) B(4)-B(7) B(4)-B(7) B(4)-B(10) B(5)-B(6) B(5)-B(1)) (2)-C(2)(Me) (3)-C(2)(Me) (4)-C(2)(Me) (4)-C(2)(Me) (5)-C(2)(Me) (5)-C(2)(Me) (6)-C(2)(Me) (6)-C(2)(Me) (7)-C(2)(Me)	211.5(4) 157.7(6) 152.0(6) 157.6(6) 164.8(6) 192.7(7) 180.9(7) 190.4(7) 180.6(6)	C(2)-B(4) C(2)-B(8) C(3)-Rh(1) C(3)-B(7) B(4)-Rh(1) B(4)-B(8) B(5)-Rh(1) B(5)-B(8) B(6)-B(9)	157.4(7) 166.0(6) 208.9(4) 156.7(7) 236.6(9) 181.0(7) 237.6(5) 181.8(7) 182.1(6)
C(2)-Rh(1) C(2)-B(5) C(2)-C(2)(Me) C(3)-B(6) C(3)-B(9) B(4)-B(7) B(4)-B(10) B(5)-B(6) B(5)-B(11) B(6)-B(11) B(6)-B(1) B(6)-B(1) B(1)-B(1) B(1)-B(1)-B(1) B(1)-B(1)-B(1)	211.5(4) 157.7(6) 152.0(6) 157.6(6) 164.8(6) 192.7(7) 180.9(7) 190.4(7) 180.6(6) 239.6(5)	C(2)-B(4) $C(2)-B(8)$ $C(3)-Rh(1)$ $C(3)-B(7)$ $B(4)-Rh(1)$ $B(4)-B(8)$ $B(5)-Rh(1)$ $B(5)-B(8)$ $B(6)-B(9)$ $B(6)-B(11)$	$157.4(7) \\ 166.0(6) \\ 208.9(4) \\ 156.7(7) \\ 236.6(9) \\ 181.0(7) \\ 237.6(5) \\ 181.8(7) \\ 182.1(6) \\ 178.7(6) \\ 178.7(6) \\ 181.8(7) \\ 182.1(6) \\ 178.7(6) \\ 181.8(7) \\ 182.1(6) \\ 181.8(7) \\ 182.1(6) \\ 181.8(7) $
C(2)-Rh(1) C(2)-B(5) C(2)-C(2)(Me) C(3)-B(6) C(3)-B(9) B(4)-B(7) B(4)-B(7) B(4)-B(10) B(5)-B(6) B(5)-B(11) B(6)-Rh(1) B(7)-Rh(1) B(7)-R	211.5(4) 157.7(6) 152.0(6) 157.6(6) 164.8(6) 192.7(7) 180.9(7) 190.4(7) 180.6(6) 239.6(5) 237.4(5)	C(2)-B(4) C(2)-B(8) C(3)-Rh(1) C(3)-B(7) B(4)-Rh(1) B(4)-B(8) B(5)-Rh(1) B(5)-B(8) B(6)-B(9) B(6)-B(1) B(7)-B(9)	$157.4(7) \\ 166.0(6) \\ 208.9(4) \\ 156.7(7) \\ 236.6(9) \\ 181.0(7) \\ 237.6(5) \\ 181.8(7) \\ 182.1(6) \\ 178.7(6) \\ 181.5(7) $
C(2)-Rh(1) C(2)-B(5) C(2)-C(2)(Me) C(3)-B(6) C(3)-B(9) B(4)-B(7) B(4)-B(10) B(5)-B(6) B(5)-B(11) B(6)-Rh(1) B(7)-Rh(1) B(7)-Rh(1) B(7)-B(10) C(2)-Rh(1) B(7)-Rh(1) B(7)-Rh(1) B(7)-Rh(1) B(7)-Rh(1) B(7)-Rh(1) B(7)-Rh(1) B(7)-Rh(1) B(7)-Rh(1) C(2)-Rh(1) C(2)-Rh(1) C(2)-C(2)(Me) C(3)-Rh(2) C(211.5(4) 157.7(6) 152.0(6) 157.6(6) 164.8(6) 192.7(7) 180.9(7) 190.4(7) 180.6(6) 239.6(5) 237.4(5) 179.5(7)	C(2)-B(4) $C(2)-B(8)$ $C(3)-Rh(1)$ $C(3)-B(7)$ $B(4)-Rh(1)$ $B(4)-B(8)$ $B(5)-Rh(1)$ $B(5)-B(8)$ $B(6)-B(9)$ $B(6)-B(11)$ $B(7)-B(9)$ $B(8)-B(10)$	$157.4(7) \\ 166.0(6) \\ 208.9(4) \\ 156.7(7) \\ 236.6(9) \\ 181.0(7) \\ 237.6(5) \\ 181.8(7) \\ 182.1(6) \\ 178.7(6) \\ 181.5(7) \\ 173.8(7) \\ 183.8(7) \\ 173.8(7) \\ 183.8(7) \\ 173.8(7) $
C(2)-Rh(1) C(2)-B(5) C(2)-C(2)(Me) C(3)-B(6) C(3)-B(9) B(4)-B(7) B(4)-B(10) B(5)-B(6) B(5)-B(11) B(6)-Rh(1) B(7)-Rh(1) B(7)-B(10) B(8)-B(11) (1) (1) (2) (2) (2) (2) (3) (4) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (6) (6) (7) (6) (7) (6) (7) (6) (7) (6) (7) (6) (7)	211.5(4) 157.7(6) 152.0(6) 157.6(6) 164.8(6) 192.7(7) 180.9(7) 190.4(7) 180.6(6) 239.6(5) 237.4(5) 179.5(7) 174.1(7)	C(2)-B(4) $C(2)-B(8)$ $C(3)-Rh(1)$ $C(3)-B(7)$ $B(4)-Rh(1)$ $B(4)-B(8)$ $B(5)-Rh(1)$ $B(5)-B(8)$ $B(6)-B(9)$ $B(6)-B(11)$ $B(7)-B(9)$ $B(8)-B(10)$ $B(9)-B(10)$	$157.4(7) \\ 166.0(6) \\ 208.9(4) \\ 156.7(7) \\ 236.6(9) \\ 181.0(7) \\ 237.6(5) \\ 181.8(7) \\ 182.1(6) \\ 178.7(6) \\ 181.5(7) \\ 173.8(7) \\ 173.8(7) \\ 174.7(7) $
C(2)-Rh(1) C(2)-B(5) C(2)-C(2)(Me) C(3)-B(6) C(3)-B(9) B(4)-B(7) B(4)-B(10) B(5)-B(6) B(5)-B(11) B(6)-Rh(1) B(7)-Rh(1) B(7)-B(10) B(8)-B(11) B(9)-B(11) B(9)-B(11) B(9)-B(11) B(9)-B(11) B(9)-B(11) B(1) C(2)-Rh(1) C(3)-Rh(1)	211.5(4) 157.7(6) 152.0(6) 157.6(6) 164.8(6) 192.7(7) 180.9(7) 190.4(7) 180.6(6) 239.6(5) 237.4(5) 179.5(7) 174.1(7) 173.2(7)	C(2)-B(4) C(2)-B(8) C(3)-Rh(1) C(3)-B(7) B(4)-Rh(1) B(4)-B(8) B(5)-Rh(1) B(5)-B(8) B(6)-B(9) B(6)-B(11) B(7)-B(9) B(8)-B(10) B(10)-B(11)	$157.4(7) \\ 166.0(6) \\ 208.9(4) \\ 156.7(7) \\ 236.6(9) \\ 181.0(7) \\ 237.6(5) \\ 181.8(7) \\ 182.1(6) \\ 178.7(6) \\ 181.5(7) \\ 173.8(7) \\ 174.7(7) \\ 182.6(7) $
C(2)-Rh(1) C(2)-B(5) C(2)-C(2)(Me) C(3)-B(6) C(3)-B(9) B(4)-B(7) B(4)-B(10) B(5)-B(6) B(5)-B(11) B(6)-Rh(1) B(7)-Rh(1) B(7)-Rh(1) B(7)-B(10) B(8)-B(11) B(9)-B(11) C(ring)-Rh(1) mean	211.5(4) 157.7(6) 152.0(6) 157.6(6) 164.8(6) 192.7(7) 180.9(7) 190.4(7) 180.6(6) 239.6(5) 237.4(5) 179.5(7) 174.1(7) 173.2(7) 220.1(4)	C(2)-B(4) $C(2)-B(8)$ $C(3)-Rh(1)$ $C(3)-B(7)$ $B(4)-Rh(1)$ $B(4)-B(8)$ $B(5)-Rh(1)$ $B(5)-B(8)$ $B(6)-B(9)$ $B(6)-B(11)$ $B(7)-B(9)$ $B(8)-B(10)$ $B(9)-B(10)$ $B(10)-B(11)$	$157.4(7) \\ 166.0(6) \\ 208.9(4) \\ 156.7(7) \\ 236.6(9) \\ 181.0(7) \\ 237.6(5) \\ 181.8(7) \\ 182.1(6) \\ 178.7(6) \\ 181.5(7) \\ 173.8(7) \\ 174.7(7) \\ 182.6(7) \\ 182.6(7) \\ 181.5(7) \\ 182.6(7) \\ 181.5(7) \\ 181.5(7) \\ 182.6(7) \\ 181.5(7) \\ 182.6(7) \\ 181.5(7) \\ 181.5(7) \\ 182.6(7) \\ 181.5(7) \\ 182.6(7) \\ 181.5(7) \\ 181.5(7) \\ 182.6(7) \\ 181.5(7) $
$\begin{array}{l} C(2)-Rh(1)\\ C(2)-Rb(1)\\ C(2)-B(5)\\ C(2)-C(2)(Me)\\ C(3)-B(6)\\ C(3)-B(9)\\ B(4)-B(7)\\ B(4)-B(10)\\ B(5)-B(6)\\ B(5)-B(11)\\ B(6)-Rh(1)\\ B(7)-Rh(1)\\ B(7)-Rh(1)\\ B(7)-B(10)\\ B(8)-B(11)\\ B(9)-B(11)\\ C(ring)-Rh(1) mean \end{array}$	211.5(4) 157.7(6) 152.0(6) 157.6(6) 164.8(6) 192.7(7) 180.9(7) 190.4(7) 180.6(6) 239.6(5) 237.4(5) 179.5(7) 174.1(7) 173.2(7) 220.1(4)	$\begin{array}{l} C(2)-B(4)\\ C(2)-B(8)\\ C(3)-Rh(1)\\ C(3)-B(7)\\ B(4)-Rh(1)\\ B(4)-B(8)\\ B(5)-Rh(1)\\ B(5)-B(8)\\ B(6)-B(9)\\ B(6)-B(1)\\ B(7)-B(9)\\ B(8)-B(10)\\ B(9)-B(10)\\ B(10)-B(11) \end{array}$	$157.4(7) \\ 166.0(6) \\ 208.9(4) \\ 156.7(7) \\ 236.6(9) \\ 181.0(7) \\ 237.6(5) \\ 181.8(7) \\ 182.1(6) \\ 178.7(6) \\ 181.5(7) \\ 173.8(7) \\ 174.7(7) \\ 182.6(7) \\ 182.6(7) \\ 181.5(7) \\ 182.6(7) \\ 182.6(7) \\ 181.5(7) \\ 182.6(7) \\ 181.5(7) \\ 182.6(7) \\ 181.5(7) \\ 182.6(7) \\ 181.5(7) \\ 182.6(7) \\ 181.5(7) \\ 182.6(7) \\ 181.5(7) \\ 182.6(7) \\ 181.5(7) \\ 182.6(7) \\ 181.5(7) $
C(2)-Rh(1) $C(2)-B(5)$ $C(2)-C(2)(Me)$ $C(3)-B(6)$ $C(3)-B(9)$ $B(4)-B(7)$ $B(4)-B(10)$ $B(5)-B(6)$ $B(5)-B(11)$ $B(6)-Rh(1)$ $B(7)-Rh(1)$ $B(7)-Rh(1)$ $B(7)-B(10)$ $B(8)-B(11)$ $B(9)-B(11)$ $C(ring)-Rh(1)$ mean <i>Angles</i> $C(2)(Me)-C(2)-Rh(1)$	211.5(4) 157.7(6) 152.0(6) 157.6(6) 164.8(6) 192.7(7) 180.9(7) 190.4(7) 180.6(6) 239.6(5) 237.4(5) 179.5(7) 174.1(7) 173.2(7) 220.1(4)	C(2)-B(4) C(2)-B(8) C(3)-Rh(1) C(3)-B(7) B(4)-Rh(1) B(4)-B(8) B(5)-Rh(1) B(5)-B(8) B(6)-B(9) B(6)-B(11) B(7)-B(9) B(8)-B(10) B(9)-B(10) B(10)-B(11) C(2)-Rh(1)-C(3)	$157.4(7) \\ 166.0(6) \\ 208.9(4) \\ 156.7(7) \\ 236.6(9) \\ 181.0(7) \\ 237.6(5) \\ 181.8(7) \\ 182.1(6) \\ 178.7(6) \\ 181.5(7) \\ 173.8(7) \\ 174.7(7) \\ 182.6(7) \\ 106.5(2) $
$\begin{array}{l} C(2)-Rh(1)\\ C(2)-B(5)\\ C(2)-C(2)(Me)\\ C(3)-B(6)\\ C(3)-B(9)\\ B(4)-B(7)\\ B(4)-B(10)\\ B(5)-B(6)\\ B(5)-B(11)\\ B(6)-Rh(1)\\ B(7)-Rh(1)\\ B(7)-Rh(1)\\ B(7)-B(10)\\ B(8)-B(11)\\ B(9)-B(11)\\ C(ring)-Rh(1) mean\\ Angles\\ C(2)(Me)-C(2)-Rh(1)\\ B(4)-Rh(1)-C(2)\\ \end{array}$	211.5(4) 157.7(6) 152.0(6) 157.6(6) 164.8(6) 192.7(7) 180.9(7) 190.4(7) 180.6(6) 239.6(5) 237.4(5) 179.5(7) 174.1(7) 173.2(7) 220.1(4) 123.2(3) 40.6(1)	C(2)-B(4) C(2)-B(8) C(3)-Rh(1) C(3)-B(7) B(4)-Rh(1) B(4)-B(8) B(5)-Rh(1) B(5)-B(8) B(6)-B(9) B(6)-B(11) B(7)-B(9) B(8)-B(10) B(9)-B(10) B(10)-B(11) C(2)-Rh(1)-C(3) B(4)-Rh(1)-C(3)	157.4(7) 166.0(6) 208.9(4) 156.7(7) 236.6(9) 181.0(7) 237.6(5) 181.8(7) 182.1(6) 178.7(6) 181.5(7) 173.8(7) 174.7(7) 182.6(7) 106.5(2) 83.6(2)
$\begin{array}{l} C(2)-Rh(1)\\ C(2)-R(5)\\ C(2)-C(2)(Me)\\ C(3)-B(6)\\ C(3)-B(9)\\ B(4)-B(7)\\ B(4)-B(7)\\ B(4)-B(10)\\ B(5)-B(6)\\ B(5)-B(11)\\ B(6)-Rh(1)\\ B(7)-Rh(1)\\ B($	211.5(4) 157.7(6) 152.0(6) 157.6(6) 164.8(6) 192.7(7) 180.9(7) 190.4(7) 180.6(6) 239.6(5) 237.4(5) 179.5(7) 174.1(7) 173.2(7) 220.1(4) 123.2(3) 40.6(1) 66.8(2)	C(2)-B(4) C(2)-B(8) C(3)-Rh(1) C(3)-B(7) B(4)-Rh(1) B(4)-B(8) B(5)-Rh(1) B(5)-B(8) B(6)-B(9) B(6)-B(11) B(7)-B(9) B(8)-B(10) B(9)-B(10) B(10)-B(11) C(2)-Rh(1)-C(3) B(4)-Rh(1)-C(3) B(6)-Rh(1)-C(2)	157.4(7) 166.0(6) 208.9(4) 156.7(7) 236.6(9) 181.0(7) 237.6(5) 181.8(7) 182.1(6) 178.7(6) 181.5(7) 173.8(7) 174.7(7) 182.6(7) 106.5(2) 83.6(2) 83.3(2)
C(2)-Rh(1) $C(2)-B(5)$ $C(2)-C(2)(Me)$ $C(3)-B(6)$ $C(3)-B(6)$ $B(4)-B(7)$ $B(4)-B(10)$ $B(5)-B(6)$ $B(5)-B(11)$ $B(6)-Rh(1)$ $B(7)-Rh(1)$ $B(7)-Rh(1)$ $B(7)-B(10)$ $B(8)-B(11)$ $B(9)-B(11)$ $C(ring)-Rh(1)$ mean <i>Angles</i> $C(2)(Me)-C(2)-Rh(1)$ $B(4)-Rh(1)-C(2)$ $B(4)-Rh(1)-B(5)$ $B(6)-Rh(1)-C(3)$	$\begin{array}{c} 211.5(4) \\ 157.7(6) \\ 152.0(6) \\ 157.6(6) \\ 164.8(6) \\ 192.7(7) \\ 180.9(7) \\ 190.4(7) \\ 180.6(6) \\ 239.6(5) \\ 237.4(5) \\ 179.5(7) \\ 174.1(7) \\ 173.2(7) \\ 220.1(4) \\ \end{array}$ $\begin{array}{c} 123.2(3) \\ 40.6(1) \\ 66.8(2) \\ 40.4(1) \\ \end{array}$	C(2)-B(4) C(2)-B(8) C(3)-Rh(1) C(3)-B(7) B(4)-Rh(1) B(4)-B(8) B(5)-Rh(1) B(5)-B(8) B(6)-B(9) B(6)-B(11) B(7)-B(9) B(8)-B(10) B(9)-B(10) B(10)-B(11) C(2)-Rh(1)-C(3) B(4)-Rh(1)-C(2) B(6)-Rh(1)-C(2) B(4)-Rh(1)-C(2) B(6)-Rh(1)-C(2) B(4)-Rh(1)-C(2) B(6)-Rh(1)-C(2) B(4)-Rh(1)-C(2) B(6)-Rh(1)-C(2) B(4)-Rh(1)-C(2) B(6)-Rh(1)-R(4) C(4)-Rh(1)-C(4) C(4)-Rh(1)-C(4) C(4)-Rh(1)-C(4) C(4)-Rh(1)-R(4)-C(4) C(4)-Rh(1)-R(4)-C(4) C(4)-Rh(1)-R(4)-C(4) C(4)-Rh(1)-R(4)-C(4) C(4)-Rh(1)-R(4)-C(4) C(4)-Rh(1)-R(4)-C(4) C(4)-Rh(1)-R(4)-C(4) C(4)-Rh(1)-R(4)-R(4)-C(4) C(4)-Rh(1)-R(4)-R(4)-R(4)-R(4)-R(4)-R(4)-R(4)-R(4	157.4(7) 166.0(6) 208.9(4) 156.7(7) 236.6(9) 181.0(7) 237.6(5) 181.8(7) 182.1(6) 178.7(6) 181.5(7) 173.8(7) 174.7(7) 182.6(7) 106.5(2) 83.6(2) 83.3(2) 86.2(2)
$\begin{array}{l} C(2)-Rh(1)\\ C(2)-R(5)\\ C(2)-C(2)(Me)\\ C(3)-B(6)\\ C(3)-B(6)\\ C(3)-B(7)\\ B(4)-B(7)\\ B(4)-B(7)\\ B(4)-B(10)\\ B(5)-B(6)\\ B(5)-B(11)\\ B(7)-Rh(1)\\ B(7$	$\begin{array}{c} 211.5(4)\\ 157.7(6)\\ 152.0(6)\\ 157.6(6)\\ 164.8(6)\\ 192.7(7)\\ 180.9(7)\\ 190.4(7)\\ 180.6(6)\\ 239.6(5)\\ 237.4(5)\\ 179.5(7)\\ 174.1(7)\\ 173.2(7)\\ 220.1(4)\\ \end{array}$	C(2)-B(4) C(2)-B(8) C(3)-Rh(1) C(3)-B(7) B(4)-Rh(1) B(4)-B(8) B(5)-Rh(1) B(5)-B(8) B(6)-B(9) B(6)-B(11) B(7)-B(9) B(8)-B(10) B(9)-B(10) B(10)-B(11) C(2)-Rh(1)-C(3) B(4)-Rh(1)-C(3) B(6)-Rh(1)-B(4) B(6)-Rh(1)-B(7)	157.4(7) 166.0(6) 208.9(4) 156.7(7) 236.6(9) 181.0(7) 237.6(5) 181.8(7) 182.1(6) 178.7(6) 181.5(7) 173.8(7) 174.7(7) 182.6(7) 106.5(2) 83.6(2) 83.6(2) 83.3(2) 86.2(2) 67.0(2)

^a The following atoms are related by a crystallographic mirror plane at 1/4 in *b*: B(1) and B(3), B(5) and B(7), and B(10) and B(8).

and **2-Me-5c** (see below) also may suggest an electronic structure that differs from the conventional eleven-vertex C_{2v} 24-electron *closo* as exhibited by neutral [2,3- $C_2B_9H_{11}$], or by the $[CB_{10}H_{11}]^-$ monoanion and the $[B_{11}H_{11}]^2^-$ dianion.

Inspection of the structure in Fig. 3 shows that $[5-Br-1-(\eta^6-C_6Me_6)-1,2,4-RuC_2B_8H_9]$ (5-Br-3a), by contrast, adopts an asymmetrical configuration 3, with the B(7), C(2), C(4) and Ru(1) centres now constituting a well defined quadrilateral open face. This in accord with the structures of the similar compounds [2,4-Me₂- $1-(\eta^{6}-p-MeC_{6}H_{4}^{i}Pr)-closo-1,2,4-RuC_{2}B_{8}H_{8}]$ [11,12], $[1,1,1-H(PPh_3)_2$ -closo-1,2,4-IrC₂B₈H₁₀] [9] and [1,1,1-H(PMe₃)₂-closo-1,2,4-IrC₂B₈H₁₀] [10] reported previously. In these, therefore, the expected *closo* cage structure, i.e. the one that would be consistent with the formal 24-electron count [15-17], is considerably distorted into an isonido type of configuration [9,31,71]. As mentioned above, the 24-electron eleven-vertex true closo cluster configuration is well-recognised to be fragile [31,71,72]. For example, $[B_{11}H_{11}]^{2-}$ and [2- $(CB_{10}H_{11})^{-}$ are both fluxional via a diamond-square-diamond rearrangement that implies open-faced isonido intermediates [73,74]. In the case of the asymmetrically constituted species 3, the asymmetry itself, together with the tendency of carbon vertices to favour low-coordinate connectivities for themselves [61,69,70], as well as localisation of electrons in the intercarbon link [C(2)–C(4) is 147.5(10) pm in compound 5-Br-3a] contributes to the stabilisation of this square-faced isonido shape. Also as mentioned above, and as discussed in detail in Refs. [28,31] for symmetrical species of type 5, a transition-element centre in the 1-position may play a role in stabilising the observed geometries by having a higher orbital involvement. Aspects of this interesting closo-isonido variation are adequately discussed elsewhere [31,71,75], not only for eleven-vertex species, but also for nine- and ten-vertex species. A closely similar phenomenon is also apparent in recent work on 12-vertex boron-containing cluster species [76-82], and the long-recognised related phenomena within the slipped 12-vertex $\{3,1,2-MC_2B_8\}$ metalladicarbaboranes should perhaps also be noted in this context [83–92].

3.3. NMR spectroscopy

All the new compounds of series 3 and 5 reported here were well characterised by NMR spectroscopy (Tables 5 and 6) [93–95]. In this characterisation, [¹¹B– ¹¹B]-COSY [96,97] and ¹H-{¹¹B(selective)} [98] NMR experiments, combined in some cases with [¹H–¹H]-COSY-{¹¹B(broadband)</sup>} measurements [99], led to the complete assignments of all the resonances to the individual {BH} and {CH} cluster units for all the compounds encountered in this study. The NMR data for Table 5

¹¹B- and ¹H-NMR chemical shifts for the metalladicarbaboranes [1-L-1,2,4-MC₂B₈H₁₀] (compounds 3) in CD₂Cl₂ at 294–297 K; presented as δ (¹¹B) ^a (¹J(¹¹B–¹H) in parentheses) [δ (¹H) ^a in square brackets (positive unless otherwise signed)]

Comp	BH(3)	BH(3)	BH(5)	BH6)	BH(10)	BH(8)	BH(11)	BH(7)	CH(2)	CH(4)
3 a	+63.5	+63.5	+0.6	+0.1	-14.9	-20.1	-26.3	-42.3	_	_
	(152)	(152)	(137)	(140)	(154)	(171)	(142)	(146)	_	_
	[7.19]	[7.19]	[1.92]	[1.21]	[0.77]	[1.91]	[+0.31]	[-2.39]	[3.77]	[3.64]
5-Br-3a	+65.1	+65.1	+1.7 ^в	-1.7	-14.4	-19.3	-24.7	-43.2	_	_
	(154)	(154)	(-)	(132)	(157)	(175)	(146)	(149)	_	_
	[7.39]	[7.39]	[-]	[1.19]	[0.70]	[2.25]	[0.66]	[-2.33]	[3.80]	[3.54]
7-Br-3a	+60.6	+60.6	1.7	-0.8	-13.4	-22.1	-24.7	-36.2 ^b	_	_
	(154)	(154)	(137)	(140)	(154)	(174)	(142)	(-)	_	_
	[7.20]	[7.20]	[1.12]	[2.04]	[1.16]	[1.81]	[0.40]	[-]	[3.95]	[3.61]
3b	62.0	62.0	0.1	-1.2	-14.4	-20.3	-26.5	-42.5	_	_
	(155)	(155)	(155) °	(155) °	(155)	(171)	(143)	(149)	_	_
	[7.74]	[7.74]	[2.29]	[1.46]	[0.88]	[1.94]	[0.38]	[-2.12]	[4.47]	[3.80]
3c	68.6	68.6	4.6	3.1	-9.0	-21.0	-23.9	- 39.2	_	_
	(158)	(158)	(158) °	(175) °	(156)	(173)	(143)	(153)	_	_
	[7.39]	[7.39]	[2.19]	[1.68]	[1.25]	[1.83]	[0.55]	[-2.03]	[3.97]	[4.20]
3d	50.3	50.3	-4.6	-5.3	-15.6	-19.3	-28.3	-47.9	_	_
	(154)	(154)	(139) °	(136) °	(156)	(171)	(143)	(149)	_	_
	[8.10]	[8.10]	[2.15]	[1.81]	[-0.65]	[2.18]	[-0.32]	[-2.81]	[5.19]	[3.81]

^a Assignment by relative intensities, $[^{11}B^{-11}B]$ -COSY (measured for all compounds; typically observed crosspeaks: 3–6 s, 3–7 s, 3–9 s, 5–6 s, 5–8 w-m, 5–11 s, 6–9 s, 6–11 s, 7–9 w-m, 7–10 w, 8–10 m–s, 8–11 s, 9–10 s, 9–11 s, 10–11 s; s = strong, m = medium, w = weak), $[^{1}H H^{-1}H]$ -COSY (measured for all compounds except for **5-Br-3a** and **7-Br-3a**; typical observed cross-peaks : 2–4 s, 2–5 s, 2–8 s, atom H(3) is not involved in the correlation due to extreme downfield position of ¹¹B(3) {see Ref. [81]}, 4–7 s, 4–8 w, 4–10 s, 5–6 m–s, 5–8 s?, 5–11 s, 6–9 w, 6–11 s, 7–9 ?–w, 8–10 m–s, 8–11 s, 9–10 s, 9–11 s, 10–11 s; ? = uncertain) and ¹H-{¹¹B(selective)} experiments (for ¹H); additional ¹H resonances for the η^6 -arene and η^5 -cyclopentadiene ligands: **3a**, +2.12 (18H, C₆Me₆); **5-Br-3a** +2.16 (18H, C₆Me₆); **7-Br-3a** +2.13 (18H, C₆Me₆); **3b** MeC₆Hⁱ₄Pr aliphatics centred at +1.12, +1.17, +1.99, +2.59, {C₆H₄} at +5.67 to +5.95 (4H); **3c**, +1.86 (15H, C, C₅Me₅); **3d**, MeC₆Hⁱ₄Pr aliphatics centred at +1.13, +1.19, +2.14, +2.59, {C₆H₄} at +5.65 to +5.85 (4H). ¹³C-NMR spectrum of **3c**: C₅Me₅ at +103.26 [doublet, ¹J(¹⁰³Rh–¹³C) 5.2 Hz] and +9.76 (quartet), C(2) and C(4) at +58.26 and +42.15.

^b Singlet; Br-substituted position.

^c Value uncertain due to peak overlap.

Table 6

¹¹B- and ¹H-NMR chemical shifts for metalladicarbaboranes [1-L-1,2,3-MC₂B₈H₁₀] (5); CD₂Cl₂ solution at 294–297 K; presented as δ (¹¹B) ^a (¹J(¹¹B–¹H) in parentheses) [δ (¹H) ^a in square brackets]

BH(8)	BH(9)	BH(4,5)	BH(6,7)	BH(10,11)	CH(2,3)
+7.9		-10.8		-24.3	_
(152)		(145)		(141)	_
[+3.20]		[+1.50]		[+0.25]	[+5.12]
+8.2		-11.5		-24.6	_
(153)		(149)		(139)	_
[+3.23]		[+1.52]		[+0.20]	[+5.05]
+6.0		-7.4		-22.5	_
(153)		(152)		(140)	_
[+3.04]		[+1.52]		[+0.36]	[+5.64]
+13.3	+4.5	-6.4		-22.4.	_
(153)		(149)		(139)	_
[+3.33]	[+2.96]	[+1.64]	[+1.51]	[+0.51]	[+2.63] ^b
					[+4.83] °
+7.6		-17.2		-26.1	_
(ca. 150)		(149)		(140)	_
[+4.25]		[+1.42]		[-0.77]	[+6.00]
	$\begin{array}{c} BH(8) \\ +7.9 \\ (152) \\ [+3.20] \\ +8.2 \\ (153) \\ [+3.23] \\ +6.0 \\ (153) \\ [+3.04] \\ +13.3 \\ (153) \\ [+3.33] \\ +7.6 \\ (ca. 150) \\ [+4.25] \end{array}$	BH(8) BH(9) $+7.9$ (152) $[+3.20]$ $+8.2$ (153) $[+3.23]$ $+6.0$ (153) $[+3.04]$ $+4.5$ (153) $[+3.33]$ $[+3.33]$ $[+2.96]$ $+7.6$ (ca. 150) $[+4.25]$ $[+2.96]$	BH(8)BH(9)BH(4,5) $+7.9$ -10.8 (152) (145) $[+3.20]$ $[+1.50]$ $+8.2$ -11.5 (153) (149) $[+3.23]$ $[+1.52]$ $+6.0$ -7.4 (153) (152) $[+3.04]$ $[+1.52]$ $+13.3$ $+4.5$ -6.4 (153) (149) $[+3.33]$ $[+2.96]$ $[+1.64]$ $+7.6$ -17.2 $(ca. 150)$ (149) $[+4.25]$ $[+1.42]$	BH(8) BH(9) BH(4,5) BH(6,7) $+7.9$ -10.8 (152) (145) $[+3.20]$ $[+1.50]$ $+8.2$ -11.5 (153) (149) $[+3.23]$ $[+1.52]$ $+6.0$ -7.4 (153) (152) $[+3.04]$ $[+1.52]$ $+13.3$ $+4.5$ -6.4 (153) (149) $[+3.33]$ $[+2.96]$ $[+1.64]$ $[+1.51]$ $+7.6$ -17.2 (ca. 150) (149) $[+4.25]$ $[+1.42]$ $[+1.42]$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

^a Assignment by relative intensities, $[^{11}B^{-11}B]$ -COSY [all theoretical $^{1}J(^{11}B^{-11}B)$ crosspeaks observed; observed cross-peaks for **2-Me-5c**: 8-4,5,6,7 s; 8-10,11 s, 9-4,5,6,7 s; 9-4,5,6,7 s; 9-10,11 s; 10,11-4,5,6,7 s; s = strong), and $^{1}H\{^{11}B(\text{selective})\}$ experiments (for ^{1}H); additional ^{1}H resonances of the η^{6} -arene and η^{5} -cyclopentadiene ligands: **5a** +2.12 (18 H, C₆Me₆); **5b** MeC₆H₄'Pr aliphatics centred at +1.22, +2.19, +2.70, and {C₆H₄} at +5.68 to +5.74 (4H); **5c** +1.93 (15 H, C₅Me₅); **5d** MeC₆H₄'Pr aliphatics centred at +1.23, +2.28, +2.66, and {C₆H₄} at +5.06 to +5.71 (4H). 13 C-NMR spectrum of **5c**: C₅Me₅ at +103.85 [doublet $^{1}J(^{103}$ Rh $^{-13}$ C) 6.1 Hz] and +9.44 (quartet), C(2,3) +79.9.

^b Signal of methyl protons.

^c Signal from CH(3) cluster-carbon protons.

compounds of type **3** are in Table 5 and those for compounds of type **5** are in Table 6, and illustrative points are depicted in Figs. 4 and 5.

As shown in Fig. 4 (bottom diagram) all complexes of the asymmetric {1,2,4-MC₂B₈} constitution **3** exhibit eight different ¹¹B resonances and very similar boron nuclear shielding behaviour. Their ¹¹B spectra span a large range of about 100 ppm. The differences among the members of the series are attributable to the presence of different metal vertices at the six-coordinate 1-position and, in the case of compounds **5-Br-3a** and **7-Br-3a**, α and β substituent effects of the bromo substituents. As found previously for the structurally analogous compounds [2,4-Me₂-1-(η^{6} -*p*-MeC₆H^{*i*}₄Pr)*closo*-1,2,4-RuC₂B₈H₈] (**2,4-Me₂-3b**) [11,12] and [1-(η^{5} -C₃H₅)-*closo*-1,2,4-CoC₂B₈H₁₀] [13,14], the spectra are characterised by eight signals between + 65 and - 50

Fig. 4. The bottom diagrams are stick representations of the chemical shifts and relative intensities in the ¹¹B-NMR spectra of the elevenvertex metalladicarbaboranes of general formulation [1-L-1,2,4-MC₂B₈H₁₀] (3), where {ML} = {Ru(η^{6} -C₆Me₆)} (3a), {Ru(η^{6} -*p*-MeC₆H^{*i*}₄Pr)} (3b), {Rh(η^{5} -C₅Me₅)} (3c), and {Os(η^{6} -*p*-MeC₆H^{*i*}₄Pr)} (3d), together with those for the substituted derivatives [5-Br-1-(η^{6} -C₆Me₆)-1,2,4-RuC₂B₈H₉] (5-Br-3a) and [7-Br-1-(η^{6} -C₆Me₆)-1,2,4-RuC₂B₈H₉] (7-Br-3a). The upper diagram is a plot of δ (¹H) versus δ (¹¹B) for individual {BH} units for all compounds 3; the correlation line drawn has slope corresponding to δ (¹¹B): δ (¹H) 11.5:1.

Fig. 5. The bottom diagrams are stick representations of the chemical shifts and relative intensities in the ¹¹B-NMR spectra of the elevenvertex *closo*-structured metalladicarbaboranes of general formulation [1-L-1,2,3-MC₂B₈H₁₀] (5), where {ML} = {Ru(η^6 -C₆Me₆)} (5a), {Ru(η^6 -*p*-MeC₆Hⁱ₄Pr)} (5b), {Rh(η^5 -C₅Me₅)-C₅Me₅)} (5c), and {Os(η^6 -*p*-MeC₆Hⁱ₄Pr)} (5d), together with those for the substituted complex [2-Me-1-(η^5 -C₅Me₅)-*closo*-1,2,3-RhC₂B₈H₉] (2-Me-5c), neutral *arachno*-6,9-C₂B₈H₁₄ (data from Ref. [28]), and the starting [*nido*-6,9-C₂B₈H₁₀]²⁻ anion substrate (species 4²⁻, data from Ref. [6]). The upper diagram is a plot of δ (¹H) versus δ (¹¹B) for individual {BH} units for all the compounds of type 5; the correlation line drawn has slope corresponding to (¹¹B): δ (¹H) 7.5:1. Note that, in capping the *nido/arachno* ten-vertex shape (lowest two traces) to give the eleven vertex closed shape (5), the formal numbering changes as follows: (1,3) \rightarrow (10,11), (2,4) \rightarrow (8,9) and (5,7,8,10) \rightarrow (4,5,6,7).

ppm, with ¹¹B(7) to extreme high field at about -45 ppm, and ¹¹B(3) to extreme low field at about +60 ppm, with a close central grouping of all the other ¹¹B resonances. For all the compounds **3** the ordering is the same within this close grouping, so that the isospectrality [95,100] arising from isostructurality is readily apparent. These ¹¹B spectra bear little resemblance to those of either *nido* [1–4] or *arachno* [101] ten-vertex {5,6-C₂B₈} skeletons, which suggests that the electronic structure of the metalladicarbaboranes **3** arises from more than just a simple addition of a metal vertex to replace bridging hydrogen atoms in the open face of the starting substrate.

In accord with the time-average C_{2v} symmetry that the clusters of compounds 5 will have in solution, the ¹¹B-NMR spectra show typical 2:4:2 patterns of doublets as also found for other compounds of cluster constitution 5 previously reported [6,12,20-27,50] (Fig. 5). The less symmetric compound 2-Me-5c should exhibit five ¹¹B resonances in 1:1:2:2:2 relative intensity ratio, but at 128 MHz exhibits an apparent 1:1:4:2 pattern. This arises because of coincidental overlap of the (4,5) and (6,7) ¹¹B resonances, these positions being readily differentiated in the ¹H-{¹¹B} spectra. The ¹¹B spectra of these compounds of type 5 span a much narrower range than those of compounds of type 3. They lack the extreme high and low field shifts of the $^{11}B(3)$ and $^{11}B(7)$ resonances of the latter, and are contained within the range $\delta(^{11}B) + 10$ to -30 ppm. Although the spectrum of the ostensible model closo species $[2,3-C_2B_9H_{11}]$ is also compact, there are no real parallels in shielding either (a) with this closo model or (b) with the $[nido-6,9-C_2B_8H_{10}]^2$ starting anion (species 4^{2-}), suggesting that the electronic structure is not (a) true *closo* or (b) bridged *nido*. As discussed above, the latter bridged nido case is also ruled out from considerations based on interatomic distances, and the former true closo may also not be favoured on this basis. In common with the $\{Pt(PMe_2Ph)_2\}$ analogue $[1,1-(PMe_2Ph)_2-1,2,3-PtC_2B_8H_{10}]$, however, the ^{11}B shielding pattern shows quite a marked similarity with that [28] of the ten-vertex *arachno* species $[6,9-C_2B_8H_{14}]$. For the platinum compound this has been interpreted in terms of a replacement of the bonds to the two bridging and two endo-terminal hydrogen atoms of $[6,9-C_2B_8H_{14}]$ by four bonds to the platinum centre [28]. The NMR and structural similarities between compounds 5 and the $\{Pt(PMe_2Ph)_2\}$ compound suggest that this four-orbital metal-to-cluster bonding interpretation should be also considered for compounds of series 5.

As also seen from Figs. 4 and 5 (upper traces), there is an approximate linear correlation between cluster ¹¹B and ¹H chemical shifts for the {BH(*exo*)} units of all the compounds of type **3** and **5**. However, the gradients δ (¹¹B): δ (¹H) for compounds **3** (ca. 11.5:1) and compounds **5** (ca. 7.5:1) are clearly different, again suggesting different electronic constitutions for the two series.

4. Supplementary material

Crystallographic data for the structural analysis has been deposited with the Cambridge Crystallographic Data Centre, for compounds **5-Br-3a** (deposition no. 144316) and **2-Me-5c** (deposition no. 144317). Copies of this information may be obtained free of charge from: The Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (Fax: +44-1223-336-033; e-mail: deposit@ccdc.cam.ac.uk or www: http://www.ccdc. cam.ac.uk).

Acknowledgements

Contribution no. 83 from the Anglo-Czech Polyhedral Collaboration (ACPC) between the Institute of Inorganic Chemistry of the Academy of Sciences of the Czech Republic and the School of Chemistry of the University of Leeds. The authors thank the Grant Agency of the Czech Republic (Grant no. 203/97/0060), the Ministry of Education of the Czech Republic (project nos. LN00A026 and LB98233), the EPSRC (United Kingdom) (Grants nos. GR/F43215 GR/H97024 and GR/K05818, as well as for a studentship to M.B.), and we also thank The British Council, the Royal Society (London, UK) and Borax Research Ltd (now Borax Europe) for support. We thank Dr Zdeněk Weidenhoffer and Mr Darshan Singh for mass spectrometric measurements, Dr Tomáš Vaněk for β-cyclodextrin materials, Dr Hana Votavová for CD measurements, Drs T. Jelínek and J. Holub for supplying some starting materials, and Drs John Farmer and Scott Griffin for helpful and friendly cooperation

References

- [1] J. Plešek, S. Heřmánek, Chem. Ind. (Lond.) (1980) 626.
- [2] J. Plešek, S. Hermánek, Collect. Czech. Chem. Commun. 19 (1974) 821.
- [3] B. Štíbr, F. Teixidor, C. Viñas, J. Fusek, J. Organomet. Chem. 550 (1998) 125.
- [4] B. Štíbr, J. Holub, T. Jelínek, B. Grüner, J. Fusek, Z. Plzák, F. Teixidor, C. Viñas, J.D. Kennedy, Collect. Czech. Chem. Commun. 62 (1997) 1229.
- [5] B. Štíbr, J. Plešek, S. Heřmánek, Collect. Czech. Chem. Commun. 38 (1973) 338.
- [6] B. Štíbr, Z. Janoušek, K. Baše, S. Heřmánek, J. Plešek, I.A. Zakharova, Collect. Czech. Chem. Commun. 49 (1984) 1891.
- [7] C.W. Jung, M.F. Hawthorne, J. Am. Chem. Soc. 102 (1980) 3024.
- [8] T.P. Hanusa, J.C. Huffman, T.L. Curtis, L.J. Todd, Inorg. Chem. 24 (1985) 787.
- [9] K. Nestor, X.L.R. Fontaine, N.N. Greenwood, J.D. Kennedy, J. Plešek, B. Štíbr, Inorg. Chem. 28 (1989) 2219.
- [10] J. Bould, N.P. Rath, L. Barton, Acta Crystallogr. Sect. C 53 (1997) 416.
- [11] M. Bown, X.L.R. Fontaine, N.N. Greenwood, J.D. Kennedy, M. Thornton-Pett, Organometallics 6 (1987) 2254.
- [12] M. Bown, X.L.R. Fontaine, N.N. Greenwood, J.D. Kennedy, M. Thornton-Pett, J. Chem. Soc. Dalton Trans. (1990) 3039.
- [13] C.J. Jones, J.N. Francis, M.F. Hawthorne, Chem. Commun. (1972) 900.
- [14] C.J. Jones, J.N. Francis, M.F. Hawthorne, J. Am. Chem. Soc. 94 (1972) 8391.
- [15] K. Wade, J. Chem. Soc. Chem. Commun. (1971) 792.
- [16] K. Wade, Chem. Brit. 11 (1975) 177.
- [17] K. Wade, Adv. Inorg. Chem. Radiochem. 18 (1976) 1.

- [18] K. Wade, M.E. O'Neill, Structural and bonding relationships among main-group organometallic compounds, in: G. Wilkinson, F.G.A. Stone, E. Abel (Eds.), Comprehensive Organometallic Chemistry I, Pergamon, Oxford, 1982, pp. 1– 42 (Chapter 1).
- [19] M.E. O'Neill, K. Wade, Structural and bonding features of metallaboranes and metallacarboranes, in: R.N. Grimes (Ed.), Metal Interactions with Boron Clusters, Plenum, New York, 1982, pp. 1–41 (Chapter 1) and references therein.
- [20] G.K. Barker, M. Green, F.G.A. Stone, W.C. Wolsey, A.J. Welch, J. Chem. Soc. Chem. Commun. (1980) 627.
- [21] G.K. Barker, M. Green, F.G.A. Stone, W.C. Wolsey, A.J. Welch, J. Chem. Soc. Dalton Trans. (1983) 2063.
- [22] G.K. Barker, N.R. Godfrey, M. Green, H.E. Parge, F.G.A. Stone, A.J. Welch, J. Chem. Soc. Chem. Commun. (1983) 277.
- [23] D.M. Schubert, C.B. Knobler, W.S. Rees, Jr, M.F. Hawthorne, Organometallics 6 (1987) 201.
- [24] D.M. Schubert, C.B. Knobler, W.S. Rees, Jr, M.F. Hawthorne, Organometallics 6 (1987) 203.
- [25] H.M. Colquhoun, T.J. Greenhough, M.G.H. Wallbridge, J. Chem. Soc. Chem. Commun. (1980) 192.
- [26] J. Plešek, B. Štíbr, S. Heřmánek, Synth. Inorg. Metal-Org. Chem. 43 (1973) 291.
- [27] J.D. Kennedy, M. Thornton-Pett, B. Štíbr, T. Jelínek, Inorg. Chem. 30 (1991) 4481.
- [28] J.D. Kennedy, B. Štíbr, T. Jelínek, X.L.R. Fontaine, M. Thornton-Pett, Collect. Czech. Chem. Commun. 58 (1993) 2090.
- [29] J.D. Kennedy, K. Nestor, B. Štíbr, M. Thornton-Pett, G.S.A. Zammit, J. Organomet. Chem. 437 (1992) C1.
- [30] K. Nestor, B. Stíbr, T. Jelínek, J.D. Kennedy, J. Chem. Soc. Dalton Trans. (1993) 1661.
- [31] J.D. Kennedy, Disobedient skeletons, in: J. Casanova (Ed.), The Borane–Carborane–Carbocation Continuum, Wiley, New York, 1998, pp. 85–116 (Chapter 3) and references therein.
- [32] W.J. Evans, M.F. Hawthorne, J. Am. Chem. Soc. 93 (1971) 3063.
- [33] (a) W.J. Evans, G.B. Dunks, M.F. Hawthorne, J. Am. Chem.
 Soc. 97 (1975) 4565. (b) D.F. Dustin, W.J. Evans, J. Jones, R.J.
 Wiersema, H. Gong, S. Chan, M.F. Hawthorne, J. Am. Chem.
 Soc. 96 (1974) 3085.
- [34] See, for example: D.F. Shriver, M.A. Drezdon, Manipulation of Air-Sensitive Compounds, second ed., Wiley, New York, 1986.
- [35] B. Grüner, J. Plešek, The dawn of chiral deltahedral boranes, in: G.W. Kabalka (Ed.), Current Topics in the Chemistry of Boron, Royal Society of Chemistry, Cambridge, 1994, pp. 371–374 and references therein.
- [36] B. Grüner, Z. Plzák, J. Chromatogr. Sect. A 789 (1997) 497.
- [37] J. Plešek, B. Grüner, P. Malon, J. Chromatogr. 626 (1992) 197.[38] J. Plešek, B. Grüner, T. Vaněk, H. Votavová, J. Chomatogr.
- 633 (1993) 73.
- [39] J. Plešek, B. Grüner, T. Vaněk, P. Maloň, Collect. Czech. Chem. Commun. 58 (1993) 1087.
- [40] J. Plešek, B. Grüner, J. Fusek, H. Votavová, Collect. Czech. Chem. Commun. 58 (1993) 2936.
- [41] J. Plešek, B. Grüner, S. Heřmánek, J. Fusek, H. Votavová, Collect. Czech. Chem. Commun. 59 (1994) 374.
- [42] J. Plešek, B. Grüner, J. Holub, Collect. Czech. Chem. Commun. 62 (1997) 884.
- [43] B. Grüner, J. Holub, J. Plešek, T. Vaněk, H. Votavová, J. Chromatogr. Sect. A 793 (1998) 249.
- [44] B. Grüner, I. Císařová, A. Franken, J. Plešek, Tetrahedron Asymm. 9 (1998) 79.
- [45] Z. Plzák, B. Štíbr, J. Chromatogr. 151 (1978) 363 and references therein.
- [46] J. Plešek, B. Štíbr, X.L.R. Fontaine, J.D. Kennedy, S.

Heřmánek, T. Jelínek, Collect. Czech. Chem. Commun. 56 (1991) 1618.

- [47] J.D. Kennedy, X.L.R. Fontaine, M. McGrath, T.R. Spalding, Magn. Reson. Chem. 29 (1991) 711.
- [48] W. McFarlane, Proc. R. Soc. Lond. Ser. A. 306 (1986) 185.
- [49] (a) G.M. Sheldrick, SHELX-97, University of Göttingen, Germany, 1997. (b) G.M. Sheldrick, SHELXTX Manual, Bruker AXS, Madison, WI, USA, 1994 and 1998.
- [50] E.J. Ditzel, X.L.R. Fontaine, N.N. Greenwood, J.D. Kennedy, Z. Sisan, B. Štíbr, M. Thornton-Pett, J. Chem. Soc. Chem. Commun. (1990) 1741.
- [51] J. Plešek, S. Hermánek, B. Štíbr, Collect. Czech. Chem. Commun. 34 (1969) 3233.
- [52] J. Plešek, S. Hermánek, B. Štíbr, Pure Appl. Chem. 63 (1991) 399.
- [53] J. Plešek, Inorg. Chim. Acta 289 (1999) 45.
- [54] See for example: G.B. Dunks, M.F. Hawthorne, *closo* Heteroboranes exclusive of carboranes, in: E.L. Muetterties (Ed.), Boron Hydride Chemistry, Academic Press, New York, 1975, pp. 383–430 (Chapter 11) and references therein.
- [55] M. Bown, X.L.R. Fontaine, N.N. Greenwood, J.D. Kennedy, M. Thornton-Pett, J. Chem. Soc. Chem. Commun. (1987) 1650.
- [56] M. Bown, X.L.R. Fontaine, N.N. Greenwood, J.D. Kennedy, P. MacKinnon, J. Chem. Soc. Chem. Commun. (1987) 817.
- [57] B. Štíbr, J. Plešek, A. Zobáčová, Polyhedron 1 (1982) 824.
- [58] K. Nestor, B. Štíbr, J.D. Kennedy, M. Thornton-Pett, T. Jelínek, Collect. Czech. Chem. Commun. 57 (1992) 1262.
- [59] J.H. Jones, X.L.R. Fontaine, N.N. Greenwood, J.D. Kennedy, M. Thornton-Pett, B. Štíbr, H. Langhoff, J. Organomet. Chem. 445 (1993) C15.
- [60] Z. Janoušek, P. Kaszynski, J.D. Kennedy, B. Štíbr, Collect. Czech. Chem. Commun. 64 (1999) 986.
- [61] R. Hoffman, W.N. Lipscomb, Inorg. Chem. 2 (1963) 231.
- [62] D. Baghurst, R.C.B. Copley, H. Fleischer, D.M.P. Mingos, G.O. Kyd, L.J. Yellowlees, A.J. Welch, T.R. Spalding, D. O'Connell, J. Organomet. Chem. 447 (1993) C14.
- [63] P.T. Brain, M. Bühl, J. Cowie, Z.G. Lewis, A.J. Welch, J. Chem. Soc. Dalton Trans. (1996) 231.
- [64] U. Grädler, A.S. Weller, A.J. Welch, D. Reed, J. Chem. Soc. Dalton Trans. (1996) 335.
- [65] S. Dunn, G.M. Rosair, R.L. Thomas, A.S. Weller, A.J. Welch, Angew. Chem. Int. Ed. Engl. 36 (1997) 645.
- [66] S. Dunn, R.N. Garrioch, G.M. Rosair, L. Smith, A.J. Welch, Collect. Czech. Chem. Commun. 64 (1999) 1028.
- [67] M.K. Kaloustian, R.J. Wiersema, M.F. Hawthorne, J. Am. Chem. Soc. 93 (1971) 4912.
- [68] M.K. Kaloustian, R.J. Wiersema, M.F. Hawthorne, J. Am. Chem. Soc. 94 (1972) 6679.
- [69] R.E. Williams, Inorg. Chem. 10 (1971) 210.
- [70] R.E. Williams, Adv. Inorg. Chem. Radiochem. 18 (1976) 67.
- [71] J.D. Kennedy, B. Stíbr, Polyhedral metallaborane and metallaheteroborane chemistry. Aspects of cluster flexibility and cluster fluxionality, in: G.W. Kabalka (Ed.), Current Topics in the Chemistry of Boron, Royal Society of Chemistry, Cambridge, 1994, pp. 285–292.
- [72] B. Štíbr, J.D. Kennedy, E. Drdáková, M. Thornton-Pett, J. Chem. Soc. Dalton Trans. (1994) 229.
- [73] E.I. Tolpin, W.N. Lipscomb, J. Am. Chem. Soc. 95 (1973) 2384.
- [74] R.J. Wiersema, M.F. Hawthorne, Inorg. Chem. 12 (1973) 785.
- [75] J. Bould, J.D. Kennedy, M. Thornton-Pett, J. Chem. Soc. Dalton Trans. (1992) 563.
- [76] M.J. Attfield, J.A.K. Howard, A.N.deM. Jelfs, C.M. Nunn, F.G.A. Stone, J. Chem. Soc. Dalton Trans. (1987) 2219.
- [77] N. Carr, D.F. Mullica, E.L. Sappenfield, F.G.A. Stone, Organometallics 11 (1992) 3697.

- [78] Z.G. Lewis, A.J. Welch, J. Organomet. Chem. 430 (1992) C45.
- [79] (a) J. Cowie, D.J. Donohue, N.L. Douek, G.O. Kyd, Z.G. Lewis, T.D. McGrath, J.M.S. Watmough, A.J. Welch, Crowded heteroboranes, in: G.W. Kabalka (Ed.), Current Topics in the Chemistry of Boron, Royal Society of Chemistry, Cambridge, UK, 1994, pp. 347–352, and references therein. (b) See also Laboratory News December, 1995, p. 8.
- [80] J. Cowie, B.D. Reid, J.M.S. Watmough, A.J. Welch, J. Organomet. Chem. 481 (1994) 283.
- [81] P.T. Brain, M. Bühl, J. Cowie, Z. Lewis, A.J. Welch, J. Chem. Soc. Dalton Trans. (1996) 231.
- [82] J.H. Kim, M. Lamrani, J.W. Hwang, Y. Do, J. Chem. Soc. Chem. Commun. (1997) 1761.
- [83] L.F. Warren, M.F. Hawthorne, J. Am. Chem. Soc. 90 (1968) 423.
- [84] R.M. Wing, J. Am. Chem. Soc. 89 (1967) 5599.
- [85] M.F. Hawthorne, D.C. Young, T.D. Andrews, D.V. Howe, R.L. Pilling, A.D. Pitts, M. Reintjes, L.F. Warren, Jr, P.A. Wegner, J. Am. Chem. Soc. 90 (1968) 879.
- [86] M.F. Hawthorne, G.B. Dunks, Science 178 (1972) 462.
- [87] A.J. Welch, J. Chem. Soc. Dalton Trans. (1975) 743.
- [88] E.A. Carroll, M. Green, F.G.A. Stone, A.J. Welch, J. Chem. Soc. Dalton Trans. (1975) 2263.
- [89] D.M.P. Mingos, M.I. Forsyth, A.J. Welch, J. Chem. Soc. Dalton Trans. (1978) 1363.

- [90] (a) H.M. Colquhoun, T.J. Greenhough, M.G.H. Wallbridge, J. Chem. Soc. Chem. Commun. (1977) 737 (b) J. Chem. Soc. Dalton Trans. (1979) 629, together with references cited therein.
- [91] Z.G. Lewis, A.J. Welch, Acta Crystallogr. Sect. C 49 (1993) 725.
- [92] D. O'Connell, J.C. Patterson, T.R, Spalding, G. Ferguson, J.F. Gallagher, Y. Li, J.D. Kennedy, R. Macías, M. Thornton-Pett, J. Holub, J. Chem. Soc. Dalton Trans. (1996) 3323, and references cited therein.
- [93] J.D. Kennedy, Boron, in: J. Mason (Ed.), Multinuclear NMR, Plenum, New York, 1987, pp. 221–258 (Chapter 11) and references therein.
- [94] D. Reed, Chem. Soc. Rev. 22 (1993) 109 and references therein.
- [95] S. Heřmánek, Inorg. Chim. Acta 289 (1999) 20 and references therein.
- [96] W.C. Hutton, T.L. Venable, R.N. Grimes, J. Am. Chem. Soc. 106 (1984) 29.
- [97] J. Schraml, J.M. Bellama, Two-Dimensional NMR Spectroscopy, Wiley, New York, 1982 and references therein.
- [98] X.L.R. Fontaine, J.D. Kennedy, J. Chem. Soc. Dalton Trans. (1987) 1573.
- [99] X.L.R. Fontaine, J.D. Kennedy, J. Chem. Soc. Chem. Commun. (1986) 779.
- [100] S. Heřmánek, Chem. Rev. 92 (1992) 325.
- [101] J. Holub, B. Štíbr, Z. Janoušek, J.D. Kennedy, M. Thornton-Pett, Inorg. Chim. Acta 221 (1994) 5.